

Main DX Barrel Chiller Controller Technical Guide

MAIN DX BARREL CHILLER CONTROLLER REVISION LOG		
REVISION AND DATE	CHANGE	
Rev. 01A, November 5, 2020	added Lead/Lag sequence, Added Pump Runtime screens, Chiller Pumping Module: removed Heat Exchanger Water Side Outlet Temperature Sensor Failure Alarm def., removed HE GLOUT NO SENSE alarm and HE GLOUT history alarm	
Rev. B, November 17, 2021	Updated format. Updated Glycol screen information	

MAIN DX BARREL CHILLER CONTROLLER PARTS REFERENCE		
PART DESCRIPTION	PART NUMBER	
Main DX Barrel Chiller Controller	ASM02655	
Chiller Refrigerant Module	ASM02654	
Vestibule Module	ASM02650	
Chiller Pumping Module	ASM02448	
Evaporative Condenser Module	ASM02318	
E-BUS Horizontal Outdoor Air Temp and RH Sensor	ASM01836	
Touchscreen Controller PPC	V99840	
Prism 2 Software	ASM02533	
CommLink 5	ASM01874	
IP Module Kit	ASM01902	
USB Link 2	ASM02244	
EBC E-BUS Cable Assembly E-BUS Power & Comm 1.5 ft., 3 ft., 10 ft., 25 ft., 50 ft., 75 ft., 100 ft., 150 ft., 250 ft., and 1000 ft. Spool	G029440 (1.5 ft.), G012870 (3 ft.), G029460 (10 ft.), G045270 (25 ft.), G029510 (50 ft.), G029530 (75 ft.), G029450 (100 ft.), G029470 (150 ft.), V36590 (250 ft.), G018870 (SPOOL)	
E-BUS Adapter Hub with 1.5 ft. E-BUS cable	ASM01635	
E-BUS Adapter Board	ASM01878	

www.aaon.com

All manuals are also available for download from www.aaon.com/controlsmanuals.

AAON 2425 South Yukon Ave. Tulsa, OK 74107-2728 www.aaon.com Factory Technical Support Phone: 918-382-6450 AAON Controls Support: 866-918-1100 It is the intent of AAON to provide accurate and current product information. However, in the interest of product improvement, AAON reserves the right to change pricing, specifications, and/or design of its product without notice, obligation, or liability. AAON P/N: G070300, Rev. B

© October 2021 AAON Inc. All rights reserved. AAON[®] is a registered trademark of AAON, Inc., Tulsa, OK. BACnet[®] is a registered trademark of ASHRAE Inc., Atlanta, GA.

Java[™] is a registered trademark of Oracle, Inc. AAON assumes no responsibility for errors or omissions in this document.

This document is subject to change without notice.

OVERVIEW	9
General Information	9
WIRING	
Important Wiring Considerations	
Main DX Barrel Chiller Controller and Refrigerant Module I/O Maps	11
Vestibule Module and Chiller Pumping Module I/O Maps	
Evaporative Condenser Module I/O Maps	
Main DX Barrel Chiller Controller Input Wiring	
Main DX Barrel Chiller Controller Output Wiring	
Chiller Refrigerant Module Input Wiring	
Chiller Refrigerant Module Output Wiring	17
Chiller Pumping Module Input Wiring	
Chiller Pumping Module Output Wiring	
Evaporative Condenser Module Input Wiring	
Evaporative Condenser Module Output Wiring	21
Vestibule Module Input Wiring	
Vestibule Module Output Wiring	
SEQUENCE OF OPERATIONS	
Main DX Barrel Chiller Controller - Overview	
Main DX Barrel Chiller Controller - Off and Run Modes	
Main DX Barrel Chiller Controller - Mechanical Chiller Overview	
Main DX Barrel Chiller Controller - Safety Checks	
Chiller Refrigeration Module - Operation	
Chiller Refrigeration Module - Safety Checks	
Vestibule Module - Operation and Safeties	
Chiller Pumping Module - Waterside Economizer Operation	
Chiller Pumping Module - Plate Heat Exchanger Operation	
Chiller Pumping Module - Water Circuit Pumping Operation	33
Trend Logs	
Trend Log Alarm Bit Strings	
TROUBLESHOOTING	37
Alarms and Faults	
Main DX Barrel Chiller Controller LED Diagnostics	
Main DX Barrel Chiller Controller LED Locations	
Refrigerant Module LED Diagnostics	
Refrigerant Module LED Locations	
Chiller Pumping Module LED Diagnostics	
Chiller Pumping Module LED Locations	
Evaporative Condenser Module LED Diagnostics and Locations	
Vestibule Module LED Diagnostics	
Thermistor Sensor Testing	
Suction Pressure Transducer Testing	
Discharge Pressure Transducer Testing	

LCD SCREENS	
LCD Display, Navigation Keys and Editing Keys	
LCD SCREENS	
Main Screens Map	
Settings Screens	
Glycol Screens	
Status Screens	
Alarms	
RSM - LCD SCREENS	55
Main Screens Map	
RSM Screens	
Status Menu Screens	
Sensor Menu Screens	
Setpoint Status Screens	
Alarm Screens	
CHILLER PUMPING MODULE - LCD SCREENS	
Main Screens Map	
Module Screens	
Module Screens	
System Status Screens	
Sensor Status Screens	
Alarms Screens	
Alarms History Screen	
Setpoint Status Screens	
Pump Runtime Screens	
EVAPORATIVE CONDENSER - LCD SCREENS	
Main Screens Map and Module Screens	
Status Menu Screens	74
Sensor Menu Screens	75
Alarms Screen	
Setpoint Status Screens	77
VESTIBULE MODULE - LCD SCREENS	
Main Screens Map and Module Screens	
Status, Alarm and Setpoint Screens	79
MAIN DX BARREL CHILLER CONTROLLER - BACNET	
MS/TP Connection	
BACnet Analog Inputs	
BACnet Analog Values	
BACnet Binary Inputs	
BACnet Multi-State Input	

TOUCHSCREEN INTERFACE	
Overview	
Start and Logging In Screens	
Changing the Passcode	
Button and Icon Function	
System Settings	
Details Screens	
Schedules and Overrides	
Setting, Saving and Restoring Holidays and Schedules	
Setpoints Screens	
Configuration Settings Screens	
Changing Configuration and Setpoint Values	
Alarms Screen	
Troubleshooting	
PRISM 2	107
Requirements	
Controller Status Screen	
Changing, Saving, and Restoring Setpoints and Charting	
Schedules and Holidays	
Schedule Override and Viewing Alarms	
RSM and EVAP Module Alarms Screens	
CPM and Vestibule Alarms and Reset Screens	
CommLink 5 Connection	
IP Module Connection	
USB-Link 2 Connection	

FIGURES

Figure 1:	Main DX Barrel Chiller Controller Input Wiring	14	
Figure 2:	Main DX Barrel Chiller Controller Output Wiring		
Figure 3:	Chiller Refrigerant Module Input Wiring	16	
Figure 4:	Chiller Refrigerant Module Output Wiring	17	
Figure 5:	Chiller Pumping Module Input Wiring	18	
Figure 6:	Chiller Pumping Module Output Wiring	19	
Figure 7:	Evaporative Condenser Module Input Wiring	20	
Figure 8:	Evaporative Condenser Module Output Wiring	21	
Figure 9:	Vestibule Module Input Wiring	22	
Figure 10:	Vestibule Module Output Wiring	23	
Figure 11:	Main DX Barrel Chiller Controller LED Locations	39	
Figure 12:	Refrigerant Module LED Locations	41	
Figure 13:	Chiller Pumping Module LED Locations	43	
Figure 14:	Evaporative Condenser Module LEDs	44	
Figure 15:	Vestibule Module LEDs	45	
Figure 16:	LCD Display Screen and Navigation Keys	49	
Figure 17:	BACnet Connection to MS/TP Network	80	
Figure 18:	Panel PC with Touchscreen Interface	94	
Figure 19:	Start Screen	95	
Figure 20:	Help Screen	95	
Figure 21:	System Overview Screen (View Only)	95	
Figure 22:	Login Screen	95	
Figure 23:	System Overview Screen (Full Access)	96	
Figure 24:	New Passcode Screen	96	
Figure 25:	Manage Users Screen	96	
Figure 26:	System Settings Screen	98	
Figure 27:	Chiller Pump Status and Waterside Economizer Status Details screen	99	
Figure 28:	Evaporator Condenser Status and Vestibule Status Details Screen	99	
Figure 29:	RSM Status Details Screen	99	
Figure 30:	RSM Status and Compressor Staging Status Details Screen	99	
Figure 31:	Scheduling Screen	100	
Figure 32:	Time Selection Screen	100	
Figure 33:	Set Time Screen - Individual Day	100	
Figure 34:	Holidays Screen	101	
Figure 35:	Holiday Set Time Screen	101	
Figure 36:	Temperatures Setpoints Screen	102	
Figure 37:	Staging Delays and Timing Intervals Setpoints Screen	102	
Figure 38:	Vestibules Setpoints Screen	102	
Figure 39:	Sensor Calibration Setpoints Screen	102	
Figure 40:	System Configuration Main Page	103	
Figure 41:	Refrigeration Modules Screens	103	
Figure 42:	Waterside Economizer Settings Screen	103	
Figure 43:	Boiler Pump Settings Screen	103	
Figure 44:	Evaporative Condenser Module	103	

FIGURES

Figure 45:	Keypad Data Entry Screen	.104
Figure 46:	Alarms Logs Screen - Administrative Access	.105
Figure 47:	Chiller Rocker Switch Panel (Three Circuit Switches Shown)	.106
Figure 48:	Prism 2 - DX Chiller Main Controller Status Screen	.108
Figure 49:	Prism 2 - Controller Setpoint Screens	.109
Figure 50:	Prism 2 - Setpoints - Temperatures	. 110
Figure 51:	Prism 2 - Setpoints - Staging Delays & Timing Intervals	. 110
Figure 52:	Prism 2 - Setpoints - Vestibules #1 and #2	. 110
Figure 53:	Prism 2 - Setpoints - Sensor Calibration	. 110
Figure 54:	Prism 2 - Setpoints - System Configuration	. 111
Figure 55:	Prism 2 - Setpoints - Refrigeration Modules	. 111
Figure 56:	Prism 2 - Setpoints - Waterside Economizer Settings	. 112
Figure 57:	Prism 2 - Setpoints - Building Pump Settings	. 112
Figure 58:	Prism 2 - Setpoints - Evap Condenser Module	. 113
Figure 59:	Prism 2 - Setpoints - Help Window	. 114
Figure 60:	Prism 2 - Clear Settings Confirmation Window	. 114
Figure 61:	Prism 2 - Charting Selection	. 114
Figure 62:	Prism 2 - DX Barrel Chiller Chart	. 114
Figure 63:	Prism 2 - Charting Selection	. 115
Figure 64:	Prism 2 - Schedules Screen	. 115
Figure 65:	Prism 2 - Yearly Holiday Schedule Screen	. 115
Figure 66:	Prism 2 - Mode Status and Override	. 116
Figure 67:	Prism 2 - Alarms Screen	. 116
Figure 68:	Prism 2 - Refrigeration Module Alarms and Reset Screen	. 117
Figure 69:	Prism 2 - EVAP Module Alarms and Reset Screen	. 117
Figure 70:	Prism 2 - CPM Alarms and Reset Screen	. 118
Figure 71:	Prism 2 - Vestibule Alarms and Reset Screen	. 118
Figure 72:	Prism 2 - CommLink 5 Connection	. 119
Figure 73:	Prism 2 - IP Module Connection	.120
Figure 74:	Prism 2 - USB-Link 2 Connection	.121

TABLES

Table 1:	Main DX Barrel Chiller Controller, Chiller Refrigerant Module and Chiller Pumping Module Electrical and Environmental Requirements	10
Table 2 [.]	Evaporative Condenser Module and Vestibule Module Electrical and Environmental Requirements	10
Table 3:	Main DX Barrel Chiller Controller Inputs and Outputs	
Table 4:	Chiller Refrigerant Module Inputs and Outputs	
Table 5:	Vestibule Module Inputs and Outputs	12
Table 6:	Chiller Pumping Module Inputs and Outputs	12
Table 7:	Evaporative Condenser Module Inputs and Outputs	13
Table 8:	Trend Log Descriptions	34
Table 9:	Alarm Group 1 Bit String	35
Table 10:	Alarm Group 2 Bit String	35
Table 11:	Alarm Group 3 Bit String	35
Table 12:	Alarm Group 4 Bit String	35
Table 13:	Alarm Group 5 Bit String	35
Table 14:	CPM Module Alarms Bit String	35
Table 15:	Evaporative Condenser Alarms Bit String	36
Table 16:	CPM Relays Bit String	36
Table 17:	APP HB LED Blink Codes	42
Table 18:	Temperature and Resistance for Type III 10K ohm Thermistor Sensors	46
Table 19:	0-250 PSI Suction Pressure Transducer Coil Pressure, Temperature, and Voltage Chart for R410-A Refrigerant	47
Table 20:	Discharge Pressure and Voltage Chart for Discharge Pressure Sensors	48
Table 21:	Navigation Key Functions	49
Table 22:	Editing Key Functions	49
Table 23:	Main DX Barrel Chiller Controller Alarms	54
Table 24:	RSM Alarms	60
Table 25:	RSM Faults	60
Table 26:	RSM Lockouts	61
Table 27:	Chiller Pumping Module Alarms	68
Table 28:	Evaporative Condenser Alarms	76
Table 29:	Vestibule Module Alarms	79
Table 30:	BACnet Analog Inputs	81
Table 31:	BACnet Analog Values	83
Table 32:	BACnet Binary Inputs	85
Table 33:	BACnet Parameter Multi-State Input	93
Table 34:	Navigation Buttons	97
Table 35:	Configuration Buttons	97
Table 36:	Administrative Icons	97
Table 37:	System Settings Functions and Buttons	98

Control System Features and Applications

The Main DX Barrel Chiller Controller provides control of the chilled water for a DX Barrel Chiller.

The Main DX Barrel Chiller Controller has an on-board BACnet port for connection to a BACnet MS/TP BAS network. There are also two E-BUS expansion ports which allow for the connection of the Chiller Refrigerant Module, Chiller Pumping Module, Evaporative Condenser Module, and Vestibule Module via E-BUS cables.

In addition, the controller and its associated modules contain a 2 x 8 LCD character display with four buttons that allow for status and alarm display and BACnet configuration.

Important Wiring Considerations

General

Correct wiring of the Main DX Barrel Chiller Controller and its modules is the most important factor in the overall success of the controller installation process. The Main DX Barrel Chiller Controller and modules are installed and wired at the AAON factory. Some of the following information may not apply to this specific installation if it was pre-wired at the factory.

Wiring

The Main DX Barrel Chiller Controller and associated modules must be connected to an 18-30 VAC power source of the proper size for the calculated VA load requirements. All transformer sizing should be based on the VA rating listed in **Table 1 and Table 2**, **this page**.

Please carefully read and apply the following information when wiring the Main DX Barrel Chiller Controller and its associated modules.

- 1. All wiring is to be in accordance with local and national electrical codes and specifications.
- 2. All 24 VAC wiring must be connected so that all ground wires remain common. Failure to follow this procedure can result in damage to the controller and connected devices.
- 3. Minimum wire size for 24 VAC wiring should be 18 gauge.
- 4. Minimum wire size for all sensors should be 24 gauge. Some sensors require two-conductor wire and some require three-or four-conductor wire.
- 5. Minimum wire size for 24 VAC thermostat wiring should be 22 gauge.
- 6. Be sure that all wiring connections are properly inserted and tightened into the terminal blocks. Do not allow wire strands to stick out and touch adjoining terminals which could potentially cause a short circuit.
- 7. When communication wiring is to be used to interconnect Main DX Barrel Chiller Controllers together or to connect to other communication devices, all wiring must be plenum-rated, minimum 18-gauge, two-conductor, twisted-pair with shield. AAON can supply communication wire that meets this specification and is color coded for the network or local loop. Please consult your AAON distributor for information. If desired, Belden #82760 or equivalent wire may also be used.
- 8. Before applying power to the Main DX Barrel Chiller Controller and its associated modules, be sure to recheck all wiring connections and terminations thoroughly.

Control Device	Voltage	VA Load	Operating Temperature	Humidity (Non- Condensing)
Main DX Barrel Chiller Controller	18-30 VAC (25%/-15%), Class 2	15	10°F to 150°F -12⁰C to 66⁰C	0-95% RH
Chiller			Resistive Inputs r Type III The	equire 10KΩ rmistor
Refrigerant Module			24 VAC Inputs provide 4.7kΩ Load	
Chiller Pumping Module	Outputs		Relay Output maximum pe	s: 1 amp r output.

Table 2: Evaporative Condenser Module and
Vestibule Module Electrical and
Environmental Requirements

WARNING: Observe Polarity. All boards must be wired with GND-to-GND and 24 VAC-to-24 VAC. Failure to observe polarity will result in damage to one or more of the boards. Expansion modules must be wired in such a way that the expansion modules and the controller are always powered together. Loss of power to the expansion module will cause the controller to become inoperative until power is restored to the expansion module.

Main DX Barrel Chiller Controller and Refrigerant Module I/O Maps

Input/Output Maps

See **Table 3**, **this page**, for the Main DX Barrel Chiller Controller Inputs/Outputs and **Table 4**, **this page**, for the Chiller Refrigerant Module Inputs/Outputs.

MAIN DX BARREL CHILLER CONTROLLER				
Analog Inputs				
1	Chiller Water In Temperature (AI1)			
2	Chiller Water Out Temperature (AI2)			
3	Barrel 1 Out Temperature (AI3)			
4	Barrel 2 Out Temperature (AI4)			
5	Chiller Out Reset (AI5)			
6	Flow Meter (AI6)			
7	Ambient Temperature (AI7)			
8	Not Used (Al8)			
	Binary Inputs			
1	Remote Run/Stop (BI1)			
2	Water Flow Switch 1 (Bl2)			
3	Water Flow Switch 2 (BI3)			
4	Safety Shutdown (BI4)			
5	Phase Brownout (BI5)			
	Relay Outputs (24 VAC)			
1	Alarm Indicator (RLY1)			
2	Chiller Running (RLY2)			
3	Chiller Fully Loaded (RLY3)			
Communication Terminals				
WATTCOMM	Communication Terminal Block			
BACNET MS/TP	Communication Terminals Block			
DUAL E-BUS	Two E-BUS Ports			
	Additional Inputs			

NOTE: The following E-BUS sensor could be connected to the Main
DX Barrel Chiller Controller via E-BUS port or E-BUS adapter:

1. E-BUS Horizontal Outdoor Air Temperature and RH Sensor

Table 3: Main DX Barrel Chiller Controller Inputs and Outputs

CHILLER REFRIGERANT MODULE			
	Analog Inputs		
1	Suction Line Pressure (0-5VDC) (Al1)		
2	Discharge Line Pressure (0-5VDC) (Al2)		
3	Suction Line Temperature Sensor (AI3)		
4	Discharge Line Temperature Sensor (Al4)		
5	Liquid Line Pressure (0-5VDC) (AI5)		
6	Liquid Line Temperature Sensor (Al6)		
7	Compressor 1 Amps (AI7)		
8	Compressor 2 Amps (AI8)		
_	Binary Inputs		
1	Compressor 1 Status (BI1)		
2	Compressor 2 Status (BI2)		
3	Compressor 1 VFD Fault (BI3)		
4	Circuit Disable (BI4)		
5	Condenser Fan Fault (BI5)		
	Analog Outputs (0-5 VDC)		
1	Compressor 1 VFD (AO1)		
2	Condenser Fan VFD (AO2)		
3	Expansion Valve (AO3)		
	Relay Outputs (24 VAC)		
1	Compressor 1 Enable (RLY1)		
2	Compressor 2 Enable (RLY2)		
3	Condenser Fan Enable (RLY3)		
	Communication Terminals		
DUAL E-BUS	Two E-BUS Ports		

Table 4: Chiller Refrigerant Module Inputs and Outputs

Vestibule Module and Chiller Pumping Module I/O Maps

Analog Inputs		
1	Not Used (Al1)	
2	Not Used (AI2)	
3	Not Used (AI3)	
4	Not Used (AI4)	
5	Vestibule Temperature Sensor (AI5)	
6	Outdoor Air Temperature Sensor (0-5VDC) (AI6)	
7	Not Used (AI7)	
	Binary Inputs	
1	Chiller Running Status (BI1)	
2	Refrigerant Leak Detector (BI2)	
3	3 Coil Pump WFS (BI3)	
4	4 Not Used (BI4)	
	Relay Outputs (24 VAC)	
1	Vent Fan Enable (RLY1)	
2	Coil Pump / Fan Enable (RLY2)	
3	Heat Enable (RLY3)	
4	Alarm (RLY4)	
	Communication Terminals	
DUAL E-BUS	One E-BUS Port	

Table 5: Vestibule Module Inputs and Outputs

CHILLER PUMPING MODULE				
Analog Inputs - 10K @ 77°F Type III Thermistors				
1	Waterside Economizer Primary Mixing Valve Outlet Temperature Sensor (AI1) (Valve Outlet Mixed Temperature)			
2	Heat Exchanger Water Side Outlet Temperature Sensor (Al2)			
3	Heat Exchanger Glycol Side Inlet Temperature Sensor (AI3)			
4	Heat Exchanger Glycol Side Outlet Temperature Sensor (Al4)			
5	Chiller Pump Building Pump Suction Pressure (AI5)			
6	Chiller Pump Building Pump Discharge Pressure (Al6)			
	Binary Inputs			
1	Waterside Economizer VFD Fault (BI1)			
2-3	Not Used (BI2) (BI3)			
4	Chiller Pump VFD 1 Fault (Bl4)			
5	Chiller Pump VFD 2 Fault (BI5)			
6	6 Glycol Feeder Low (BI6)			
	Analog Outputs			
1	Waterside Economizer VFD Speed (AO1)			
2	Waterside Economizer Primary 3-Way Mixing Valve Actuator (AO2)			
3	Waterside Economizer Secondary 3-Way Mixing Valve Actuator (AO3)			
4	Chiller Pump VFD (AO4)			
5	Bypass Valve (AO5)			
	Relay Outputs (24 VAC)			
1	Waterside Economizer Fan Enable (RLY1)			
2	Waterside Economizer Glycol Circuit Pump (RLY2)			
3	Chiller Pump Primary A Pump 1 (RLY3)			
4	Chiller Pump Primary A Pump 2 (RLY4)			
5	Chiller Pump Secondary Pump 1 (RLY5)			
6	Chiller Pump Secondary Pump 2 (RLY6)			
7	Chiller Pump Primary B Pump 1 (RLY7)			
8	Chiller Pump Primary B Pump 2 (RLY8)			
	Communication Terminals			
DUAL E-BUS	Two E-BUS Ports			

 Table 6: Chiller Pumping Module Inputs and Outputs

Evaporative Condenser Module I/O Maps

EVAPORATIVE CONDENSER MODULE		
	Analog Inputs	
1	Condenser Pump 1 Amps (SP)	
2	Condenser Pump 2 Amps (HP)	
3	Sump Temperature Sensor 1 (TEMP1)	
4	Sump Temperature Sensor 2 (TEMP2)	
5	Sump Temperature Sensor 3 (TEMP3)	
6	Low Sump (Dry Contact) (TEMP4)	
	Binary Inputs	
1	Pump 1 Pressure Switch (BI1)	
2	Pump 2 Pressure Switch (BI2)	
3	Condenser Pump 1 VFD Fault (BI3)	
4	Condenser Pump 2 VFD Fault (BI4)	
	Analog Outputs	
1	Pump 1 VFD Speed (AO1)	
2	Pump 2 VFD Speed (AO2)	
	Relay Outputs (24 VAC)	
1	Condenser Pump 1 Run (RLY1)	
2	Condenser Pump 2 Run (RLY2)	
3	Sump Heater Enable (RLY3)	
4	Drain Valve / Disable Make-Up Water (RLY4)	
	Communication Terminals	
DUAL E-BUS	2 E-BUS Ports	

Table 7: Evaporative Condenser Module Inputs and Outputs

Main DX Barrel Chiller Controller Input Wiring

The Main DX Barrel Chiller Controller provides control of the Chilled Water for one or two DX Barrel Chillers. The controller is designed with eight analog inputs, four analog outputs, eight binary inputs, and eight relay outputs.

The controller has an on-board BACnet port for connection to a BACnet MS/TP network. There are also two E-BUS expansion ports which allow the connection of communicating sensors and E-BUS modules via E-BUS cable assemblies.

Remote Run/Stop $\rightarrow \vdash \diamond$ Water Flow Switch 1 0 \triangleright Water Flow Switch 2 0 YS102612 REV 1 \vdash +12V Safety Shutdown \square ALARM I Ē Phase Brownout Ø 1 $\rightarrow \vdash \circ$ MENU ENTER RLY4 \square **Chiller Water In** DOWN **Temperature Sensor** WHT RLY6 I Mount in chiller entering \square RS-485 COMM LOOP BLK AAON WIRE "T" TO "T "S" TO "S" "R" TO "R" water line www.aaon.com COMMON COMMON **Chiller Water Out** MAIN DX BARREL CONTROLLER **Temperature Sensor** WHT AAON P/N: ASM02655 SERIAL # GND BLK Ħ Mount in chiller leaving GND BINARY INPUTS **RELAY OUTPUTS** ANALOG RLY1 = ALARM INDICATOR RLY2 = CHILLER RUNNING water line Ħ GND INPUT JUMPERS BI1 = REMOTE RUN/STOP BI2 = WATER FLOW SWITCH 1 BI3 = WATER FLOW SWITCH 2 BI4 = SAFETY SHUTDOWN BI5 = PHASE BROWNOUT Ħ THERM 28 nA 8 SV 8 SV ATUS : 0-5V 0-10V 1-20mA **Barrel Water Out 1** RLY3 = CHILLER FULLY LOADED **Temperature Sensor** WHT Ħ AI1 Ħ AI2 ANALOG INPUTS AI2 Mount in Barrel BI K AI1 = CHILLER WATER IN TEMP AI2 = CHILLER WATER OUT TEMP AI3 = BARREL 1 OUT TEMP AI4 = BARREL 2 OUT TEMP Ħ Leaving Water Line 1 AI3 **FT** Ħ AI4 AI5 = CHILLER OUT RESET AI6 = FLOW METER AI7 = AMBIENT TEMP AI8 = NOT USED Bag H 34 024 **Barrel Water Out 2** AI5 Ħ Temperature Sensor WHT 88 89 BACNET + A16 BACNET SHIELD = SH BACNET - = T H AI7 Mount in Barrel BI K Ħ 24 VAC POWER ONLY WARNING! POLARITY MUST BE OBSERVED OR THE CONTROLLER WILL BE DAMAGED Leaving Water Line 2 Ħ A18 ଜଜ Ħ VDC Ħ OUTPUTS GND T WHT Chiller Out +c+ 24VDC **Reset Signal** + 5 VDC GND USB - 0 LABEL P/N: G070270 (0-10 VDC) BLK DUAL C48 E-BUS \square WHT +0 Flow Meter **C14** DC (0-5 VDC) - 0 BLK **Outdoor Air** Temperature GND 18-30 VAC Sensor Size transformer for correct total load. DX Barrel Chiller Controller = 15 VA Line Voltage

Figure 1: Main DX Barrel Chiller Controller Input Wiring

The controller contains a 2 x 8 LCD character display and four buttons that allow for status and alarm display as well as BACnet configuration. See **Figure 1**, **this page**, below for input wiring. The Main DX Barrel Chiller Controller has two E-BUS expansion ports which allow for the connection of the Chiller Refrigerant Module, the Chiller Pumping Module, the Evaporative Condenser Module, and the Vestibule Module via E-BUS cables.

The Main DX Barrel Chiller Controller must be connected to an 18-30 VAC power source. Please see **Table 1**, **page 10**, for correct VA requirements to use when sizing the transformer(s) used for powering the controller and its associated modules. See **Figure 2**, **this page**, for output wiring. **NOTE:** When wiring the Main DX Barrel Chiller Controller, its contacts must be wired as wet contacts (connected to 24 VAC).

Chiller Refrigerant Module Input Wiring

The Chiller Refrigerant Module provides control of the compressors and condenser fans on a DX Barrel Chiller. Up to six refrigerant modules can be used, one per circuit.

The module is designed with eight analog inputs, five analog outputs, ten binary inputs, and eight relay outputs.

The module has two E-BUS expansion ports which allow the connection of communicating sensors and E-BUS modules via modular cable assemblies.

The module contains a 2 x 8 LCD character display and four buttons that allow for status and alarm display.

The Chiller Refrigerant Module must be connected to an 18-30 VAC power source. When wiring the refrigerant module, its relay outputs must be wired as wet contacts (connected to 24 VAC). See **Figure 3**, **this page**, for input wiring and **Figure 4**, **page 17**, for output wiring.

Figure 3: Chiller Refrigerant Module Input Wiring

Chiller Refrigerant Module Output Wiring

Chiller Pumping Module Input Wiring

The Chiller Pumping Module modulates and stages the compressors to satisfy the Main DX Barrel Chiller Controller's leaving water temperature.

The module is designed with eight analog inputs, five analog outputs, ten binary inputs, and eight relay outputs.

The module has two E-BUS expansion ports which allow the connection of communicating sensors and E-BUS modules via modular cable assemblies.

The module contains a 2 x 8 LCD character display and 4 buttons that allow for status and alarm display.

The Chiller Pumping Module must be connected to an 18-30 VAC power source. When wiring the module, its relay outputs must be wired as wet contacts (connected to 24 VAC).

See **Figure 5**, this page, for input wiring and **Figure 6**, page 19, for output wiring.

Figure 5: Chiller Pumping Module Input Wiring

Chiller Pumping Module Output Wiring

Figure 6: Chiller Pumping Module Output Wiring

Evaporative Condenser Module Input Wiring

The Evaporative Condenser Module controls the Evaporative Condenser of the Chiller to help control the head pressure. The module is designed for R410-A refrigerant.

The module is connected to the Main DX Barrel Chiller Controller. Only one Evaporative Condenser Module can be connected. The module provides a 2 x 8 LCD character display and four buttons that allow for status of system operation, system setpoints, system configurations, sensors, and alarms, and to change the module's address, if necessary.

See Figure 7, this page, for input wiring and Figure 8, page 21, for output wiring.

Figure 7: Evaporative Condenser Module Input Wiring

Evaporative Condenser Module Output Wiring

Figure 8: Evaporative Condenser Module Output Wiring

Vestibule Module Input Wiring

The Vestibule Module can be used to control the heating, cooling, and venting of the vestibule it is mounted in. It monitors the heating, cooling, and venting operation to manage the conditions of a single vestibule.

The Vestibule Module can be used in stand-alone mode or communicating with the Main DX Barrel Chiller Controller. Up to two Vestibule Modules can be connected, depending on the size of the system. The module has two E-BUS expansion ports which allow the connection of communicating sensors and E-BUS modules via modular cable assemblies.

The module contains a 2 x 8 LCD character display and four buttons that allow for status and alarm display.

See Figure 9, this page, for input wiring and Figure 10, page 23, for output wiring.

Figure 9: Vestibule Module Input Wiring

Vestibule Module Output Wiring

Figure 10: Vestibule Module Output Wiring

SEQUENCE OF OPERATIONS

Main DX Barrel Chiller Controller - Overview

DX Barrel Chiller Operation

The Main DX Barrel Chiller Controller directly operates the following components to provide chilled water:

- Mode control
- Mechanical chilling oversight
- Glycol feeder level monitor
- External control interface (e.g. a building management system)
- Safety checks

Chilling operation involves operations outside the main chiller controller; however, the controller maintains operational management of these components, including:

- Mechanical chilling
- Water circuit pumping
- Economizing

Chiller Mode of Operation

There are two operational modes for the chiller system:

- Off Mode
- Chiller (Run) Mode

The sequence is based primarily on "normal" operation, with extensions to operation where exceptional conditions are present (safeties).

Controlling the Operator Modes

The two operator modes are commanded by a combination of four mode control factors:

- Remote Unit Enable/Disable Input
- Internal Schedule
- Run/Stop override via BACnet
- Run/Stop override via the User Interface

Remote Unit Enable/Disable Input

This input is a master override to disable the unit.

When this input is inactive, the chiller will not run regardless of the other three control factors.

When this input is active, the chiller will operate according to the condition of the other three factors. Since the schedule defaults to always active, and the overrides default to always inactive, activating this input will by default activate the chiller.

Internal Schedule

The chiller controls have an internal schedule which may be used to automate chiller operations on a timed basis. This schedule defaults to always on and, in combination with the Remote Unit Enable/Disable input, can affect the electrical binary remote control of the chiller.

NOTE: Regardless of the internal schedule commands, the Remote Unit Enable/Disable Input must be active for the chiller to run. The schedule has no effect on operations otherwise. The internal schedule can be overridden by either of the Run/Stop Override settings.

Run/Stop Override via BACnet and Run/Stop Override via User Interface

These two override operations, issued from two possible sources, affect the same single internal conditional variable, meaning an override issued by BACnet can be canceled via the user interface and an override condition issued by the user interface can be canceled or altered via BACnet.

NOTE: Regardless of the override conditions, the Remote Unit Enable/Disable Input MUST be active for the chiller to run. These override conditions have no meaning if the input is not active.

There are three Run/Stop Override value settings:

- **0 = Automatic Operation:** Operation will be based on an internal schedule.
- **1 = Chiller Run:** Chiller will operate in the Running Mode.
- **2 = Chiller Off:** Chiller will operate in the Off Mode.

Main DX Barrel Chiller Controller - Off and Run Modes

Off Mode

If the Remote Enable/Disable is disabled, the internal schedule (if used) has transitioned to the Unoccupied Mode, or if an override is indicating stop, the chiller will enter the Off Mode. In Off Mode, everything that was running will shut down.

NOTE: If there are multiple circuits, each circuit will pump down separately, yet simultaneously, and terminate independently.

Once the compressors have shut down, the condenser fans will shut down, the Waterside Economizer (if present) will shut down, and the circuit pumping (if present) will shut down.

Chiller Run Mode

Condenser Operation

When chilling operation starts there will be a 30 second delay while all inputs stabilize and all modules initialize.

The Chiller Pumping Module (if present) will be commanded to begin operation.

If the barrel does not have an evaporative condenser or the evaporative condenser is locked out, the condenser fan will be used for heat rejection.

If the barrel does have an evaporative condenser and if the ambient temperature is at or above the Ambient First Stage Enable Setpoint, the evaporative condenser will be used as the first stage of heat rejection followed by the condenser fan. If the ambient temperature is below the Ambient First Stage Enable Setpoint, the condenser fan will be used as the first stage of heat rejection followed by the evaporative condenser.

Waterside Economizer Operation (runs on the Chiller Pumping Module)

If Waterside Economizer is present and the ambient temperature is below the entering water temperature by the adjustable Waterside Economizer enable deadband (default: 5°F), the Waterside Economizer will be enabled to operate.

If Waterside Economizer is present and the ambient temperature is greater than the entering water temperature minus half the Waterside Economizer deadband (default: -2.5°F), the Waterside Economizer will be disabled.

If Waterside Economizer is not present, is not active, or has reached its maximum, and the Leaving Water Temperature is above the Leaving Water Temperature Setpoint by the Mechanical Chilling Enable deadband, then Mechanical Chilling will be enabled. The controller will send a signal to the Chiller Pumping Module that mechanical chilling is active and the Waterside Economizer (if active) will be locked at maximum.

SEQUENCE OF OPERATIONS

Main DX Barrel Chiller Controller - Mechanical Chiller Overview

Mechanical Chilling Overview

The Main DX Barrel Chiller Controller, in combination with one or more Chiller Refrigeration Modules, manages all mechanical chilling operation. The operation of the mechanical chilling is broken into different pieces that work together to accomplish the chilling.

- Leaving water temperature control
- Barrel control
- Staging operation
- Circuit control
 - This operation runs on the Refrigeration Modules; however, controller notifies the refrigeration modules of evaporative condenser availability and transfers evaporative condenser commands to the Evaporative Condenser Module.

Leaving Water Temperature Control

The controller will generate an offset based on a PI loop on the leaving water temperature error. This offset will be limited from zero to the barrel out target temperature reset limit (default: 5°F). The barrel out target temperature is the difference between the Leaving Water Temperature Setpoint and this offset.

Staging Operation

A barrel may have one, two, or three refrigeration circuits, each with one or two compressors. The main chiller controller provides staging time control and sequencing while the refrigeration module manages minimum run times, off times, and other limiting parameters of individual compressors on circuits through indication of availability.

Barrel Control

Chillers have three possible barrel arrangements:

- Single Barrel with Single Primary Water Circuit.
- Dual Barrels with Single Primary Water Circuit.
- Dual Barrels with Independent Primary Water Circuits.

Barrel operation varies slightly with each arrangement. The staging control will stage compressors up and down on each barrel independently, with the exceptions noted below:

Single Barrel with Single Primary Water Circuit

The compressor and circuit operation will stage to modulate the barrel out temperature to the Barrel Out Temperature Setpoint.

The Chiller Pumping Module will deactivate pumping operations when the last compressor is deactivated.

Dual Barrels with Single Primary Water Circuit

The compressor and circuit operation will stage each barrel independently as its own barrel.

When a stage up condition is determined, the barrel with the warmest output temperature will stage up first.

When a stage down condition is determined, the barrel with the coldest output temperature will stage down first if it has a stage to deactivate; otherwise, the warmer barrel will stage down if it has a stage to deactivate.

If both barrels have only one compressor active, and one barrel has a variable compressor active, the compressor on the other barrel will deactivate. If the barrel does not have a variable compressor active, the compressor on the lag barrel will deactivate.

If only one barrel has an active compressor, and chiller pumping is present but Waterside Economizer is not, the Chiller Pumping Module will shut down.

Dual Barrels with Independent Primary Water Circuits

The compressor and circuit operation will stage each barrel independently as its own barrel.

Staging is similar to that of Dual Barrels with Single Primary Water Circuit, except that the second barrel will not be activated until the first barrel has reached a certain capacity.

Circuit Control

The controller will notify the refrigeration modules that condenser control is available if there is no evaporative condenser, if the evaporative condenser is locked out, or if the ambient temperature is below the evaporative condenser lockout temperature.

If the barrel configuration is for dual barrel and there is a Pump 1 Failure, then evaporative condensing will not be available for the first circuit on each barrel. If there is a Pump 2 Failure, then evaporative condensing will not be available for the last circuit on each barrel.

Main DX Barrel Chiller Controller - Safety Checks

Safety Checks

Safeties represent operating conditions which may override or otherwise affect normal operation.

Water Flow Switch Input

The water flow switch controls when mechanical chilling may operate. Mechanical chilling cannot be started until the water flow switch is active for a minimum of 30 seconds.

When water flow is present, if the water flow switch is inactive for more than 30 seconds, an emergency shut down of running compressors on all refrigeration modules for the barrel will occur (no pump down). An alarm will activate indicating water flow failure. Once the switch is reactivated, mechanical chilling may restart as needed.

Phase Brownout Input and Emergency Shutdown Input

These are direct safety inputs and must be active for the chiller to operate and for pumping operations (when circuit pumping is configured).

If either of the phase brownout or safety shutdown signals go inactive, a phase brownout alarm or emergency shutdown alarm will be generated. All chiller operations and any running compressors on all refrigeration modules will be shut down immediately. If the Chiller Pumping Module is present, pumping will deactivate and any freeze protection operation will stop. If the Evaporative Condenser Module is present, all pumping and water heating operations will stop. Once reactivated, the alarm will clear and the chiller may restart operations from the beginning as if just powered up.

NOTE: Activation of either of these shutdowns will not affect the state of the evaporative condenser drain valve. The drain valve can be commanded open/closed via BACnet during this shutdown condition.

Refrigerant Leak Detection

If a vestibule controller is present and gives indication of a leak detection, a refrigerant leak detection alarm will generate. All running compressors on all refrigeration modules for the barrel associated with the vestibule will be shut down.

Freeze Protection

If the barrel out temperature drops below the barrel out freeze protection limit, a freeze protection failure alarm will be generated. All active compressors on all refrigeration modules for the barrel associated with the vestibule will shut down immediately.

If the Chiller Pumping Module is present, the pumping action will be activated for the barrel to keep water flowing through the barrel and warm it from the building.

The freeze protection operation will be terminated when the barrel out temperature is 5°F above the freeze protection limit.

Glycol Feeder Low Input

If the glycol feeder low input is activated, an alarm will be generated indicating the glycol feeder is low.

Non-Critical Sensor Failure

If a non-critical sensor fails, an alarm will be generated to indicate the failure and normal operations will continue.

Critical Sensor Failure

If a critical sensor fails, an alarm will be generated to indicate the failure. If there is an alternative sensor that can serve as a backup, that sensor will be used in place of the failed sensor. If there is no backup sensor available, an additional alarm will be generated indicating that normal operations cannot continue. All operations associated with the failed sensor will then be shut down and locked out, including all chilling operations.

SEQUENCE OF OPERATIONS

Chiller Refrigeration Module - Operation

Chiller Refrigeration Module Operation

The refrigeration module controls the following components to maintain a target Barrel Out Water Temperature:

- One compressor or two compressors in tandem
- A condenser consisting of a directly controlled variable speed fan and an indirectly controlled evaporative condenser spray pump (optional)
- An electronic expansion valve

Mode Control

The controller commands the refrigerant module into one of two possible operating modes: Off Mode and Chiller Run Mode.

Off Mode

In Off Mode, the system is not running and will remain off for at least the adjustable minimum compressor off time.

Chiller Run Mode

In Chiller Run Mode, the compressor indicated to run by the main chiller controller will be activated, the condenser operations for the circuit will be activated, and the electronic expansion valve operations for the circuit will be activated.

Circuit Pump-Down

Circuit pump-down is initiated when a compressor/refrigeration circuit is running and is commanded not to run. During pumpdown, the electronic expansion valves will be set to the pumpdown position (factory-adjustable only) and stay there for the duration of the pump-down. Any active compressors will continue to operate until the suction pressure reaches the low suction pressure limit or 30 seconds have elapsed.

Compressor Operation

There are four possible configurations for the compressors on the circuit:

- Single fixed compressor
- Single variable compressor
- Two fixed compressors in tandem
- Variable compressor plus fixed compressor in tandem

Compressor Modulation

If the first (only) compressor is a variable compressor, the compressor will modulate to regulate to the Barrel Out Water Temperature provided by the main chiller controller while staying within the compressor protection envelope.

Compressor Shutdown

Prior to shutting down the last compressor on a circuit, a circuit pump-down operation will be performed.

Condenser Operation

The condenser has two modes of operation:

- Condenser Off
- Condenser Condensing

If there is no evaporative condenser, then for each active circuit,the condenser fan will activate and start at minimum speed. The fan will modulate to maintain the Head Pressure Setpoint.

If there is an evaporative condenser, the controller will determine whether the evaporative condenser or the condenser fan will act as first stage of heat rejection based on the ambient temperature relative to the Ambient First Stage Enable Setpoint. If one type of condenser control is operating as first stage, but a change of ambient temperature dictates that the other type of condenser operation should now be the first stage, then the controller can disable the first type of control and enable the other type.

If the condenser fan is first stage and has modulated to 100%, but the head pressure still exceeds the Head Pressure Setpoint deadband (and if the evaporative condenser is available), the evaporative spray pump will be activated and will work in conjunction with the condenser fan to achieve the Head Pressure Setpoint. If the fan is at minimum and the head pressure drops below the Head Pressure Setpoint deadband, the evaporative spray pump will deactivate while the fan is allowed to modulate.

If evaporative condensing is acting as first stage and the head pressure exceeds the Head Pressure Setpoint deadband, the evaporative spray pump will activate. If the spray pump has been activated for more than 30 seconds, the fan will be activated at minimum speed and will then modulate to maintain the Head Pressure Setpoint. If the head pressure drops below the Head Pressure Setpoint deadband, the fan will deactivate. If the head pressure remains below the Head Pressure Setpoint deadband for more than 30 seconds, the evaporative spray pump will deactivate.

Electronic Expansion Valve Operation

The refrigeration module commands the electronic expansion valve to a predetermined starting position. A startup delay will hold the electronic expansion valve in the starting position for a set time.

The module will use a PID control loop to command the modulation of the electronic expansion valve position to regulate the superheat to the Superheat Setpoint. If pump-down operations are implemented, the electronic expansion valve will be set to the pump-down position and will remain there until commanded to close.

Chiller Refrigeration Module - Safety Checks

Safety Checks

Emergency Shutdown

In Emergency Shutdown, a pump-down operation will not be performed on the circuit. All compressors will be deactivated and the electronic expansion valve will close.

Alarms

Alarms generally provide notification of an abnormal condition in the circuit and may cause an override or alter certain operations. There are three types of alarms:

- Warnings
- Faults
- Lockouts

Warnings

Warnings are alarms that may alter operating limits in circuit operation in an attempt to overcome the warning condition without stopping any current operations. Warnings may progress into faults, but otherwise will recover without intervention.

Faults

Faults are alarms that result in forcibly shutting down compressors in an attempt to overcome the fault condition. Faults may progress into lockouts, but otherwise will recover without intervention.

Lockouts

Lockouts are alarms that result in termination of all operation for the circuit. Operation cannot resume without servicing.

SEQUENCE OF OPERATIONS

Vestibule Module - Operation and Safeties

Vestibule Module Operation

Vestibule Module operation includes the following:

- Heating
- Cooling
- Venting

Heating Operation

If heating control is configured, when the vestibule temperature drops below the Heating Enable Setpoint deadband, heating will be activated. Alternately, when the vestibule temperature rises above the Heating Enable Setpoint deadband, heating will be deactivated.

Cooling Operation

If cooling control is configured and is not locked out, when the vestibule temperature rises above the Cooling Enable Setpoint deadband and the chiller is active, the coil pump and coil fan output will be activated to begin cooling. Alternately, when the vestibule temperature drops below the Cooling Enable Setpoint deadband or the chiller becomes inactive, the coil pump and coil fan output will be deactivated to stop cooling.

Venting Operation

If cooling operation is not active, and the vestibule temperature rises above the Cooling Enable Setpoint deadband and the ambient temperature (if available) is below the vestibule temperature by 0.5° F, the vent fan output will be activated.

If cooling operation is active or when the vestibule temperature drops below the Cooling Enable Setpoint deadband or the ambient temperature (if available) rises above the vestibule temperature by 0.5° F, the vent fan output will be deactivated.

Chiller Run Status

The chiller running status is determined by either the chiller running input (if configured), or from a chiller running status indication from the controller.

Vestibule Safeties

Refrigerant Leak Detection

If the module detects a refrigerant leak, the heat output, coil pump, and coil fan output will deactivate. The vent fan output will activate, and the Vestibule Module will be locked in safety mode.

Coil Pump Water Flow Switch

If the coil pump water switch input is configured, if the water flow switch does not activate within 15 seconds, or if, once activated, the water flow input deactivates for more than five seconds, an alarm will activate indicating cooling coil pump failure. The cooling coil output will be disabled and this lockout condition will be maintained until power is cycled or a clear signal is given via E-BUS.

Chiller Pumping Module - Waterside Economizer Operation

Chiller Pumping Module Operation

The chiller pumping module operates the following three optional components:

- Waterside Economizer Operation
- Plate Heat Exchanger Operation
- Water Circuit Pumping Operation

Waterside Economizer Operation

The Chiller Pumping Module Waterside Economizer operation consists of two modes that are commanded by controller: Off Mode and Economizing Mode.

Off Mode

If Mechanical Chilling is not active and the unit leaves Waterside Economizer operation, the Waterside Economizer fan will de-energize and the mixing valve will close. If the chiller has a plate heat exchanger in a Waterside Economizer isolation configuration, the glycol side pump will de-energize and the secondary mixing valve will close and freeze protection operations will remain active.

If Mechanical Chilling is active (meaning the mixing valve is full open and the fan output is active at 100%) and the unit leaves Waterside Economizer operation, the primary mixing valve will close at a slowed programmable rate (default: one minute) and the Waterside Economizer fan will de-energize. If the chiller has a plate heat exchanger in a Waterside Economizer isolation configuration, the glycol side pump will de-energize and the secondary mixing valve will close at normal speed and freeze protection operations will remain active.

Economizing Operation

The controller will communicate to the Chiller Pumping Module when conditions are favorable for Waterside Economizer operation. The Waterside Economizer has two variable stages of chilling: Mixing Valve Stage and Fan Stage.

When the economizer and mechanical chilling are simultaneously active, the two stages of the economizer operate at maximum (except as may be overridden by the plate heat exchanger freeze protection operation).

Mixing Valve Stage

As the first stage of chilling, the primary mixing valve will modulate to regulate the output water temperature. If the chiller has a plate heat exchanger in a Waterside Economizer isolation configuration, the primary mixing valve will be maintained full open during economizing, the secondary mixing valve will modulate, and the glycol side pump will activate.

If the chiller has a plate heat exchanger in a primary loop isolation configuration, the primary mixing valve will modulate to regulate the output water temperature from the plate exchanger.

Fan Stage

As the second stage of chilling, the fan will be activated and modulate to regulate the output water temperature. There is a hysteresis in the fan start/stop operation to avoid fan cycling.

Economizing Mode

Economizing Mode operation varies based on whether or not mechanical chilling is active.

Economizing While Mechanical Chilling is Not Active

The economizer operates one or both stages of its chilling to regulate the output water temperature: mixing valve or fan.

Mixing Valve Control: If the fan output is active and operating above the minimum fan speed during water mixing valve control, the mixing valve will be set to maximum.

If the fan output is not active, a PID control loop will be used to control the mixing valve to maintain the Chiller Leaving Water Temperature Setpoint. However, if the chiller has a plate heat exchanger, the mixing valve will be controlled to maintain the heat exchanger outlet temperature to the Chiller Leaving Water Temperature Setpoint.

Fan Control: If the water mixing valve reaches 100%, the fan relay will activate. The fan VFD speed will be held at the Minimum Speed Setpoint for the fan startup delay period (default 0 seconds). The fan will then modulate, using a PID control loop, to control the Chiller Leaving Water Temperature to the Chiller Leaving Water Temperature Setpoint.

If the fan speed reaches 100%, mechanical chilling can be used to maintain the Chiller Leaving Water Temperature Setpoint.

If the water mixing valve output modulates below the minimum mixing valve position with fan on setpoint, the fan will be deenergized

Economizing While Mechanical Chilling is Active

If mechanical chilling activates during economizer operation to supplement economizer cooling, the economizer mixing valve and fan will operate at 100% unless limited by freeze protection.

If the economizer enables while mechanical cooling is active, the fan VFD output will be set to the Minimum Speed Setpoint and will be held there until the configurable fan startup delay has been met (default 0 seconds). The fan relay will then be energized and the speed will be set to 100%.

If the chiller has a plate heat exchanger in a waterside economizer isolation configuration, the glycol side pump will be activated and the secondary mixing valve will be opened to full open (full open may be limited by freeze protection). The primary water mixing valve will be driven full open at a slowed rate (default 30 minutes).

SEQUENCE OF OPERATIONS

Chiller Pumping Module - Plate Heat Exchanger Operation

Plate Heat Exchanger Operation

The plate heat exchanger has no direct operation, it is a passive device. However, it does run safety checks and can override operations on the Waterside Economizer or the water circuit pumping to help protect it from freezing.

The plate heat exchanger operation utilizes the following input points from the Chiller Pumping Module:

- HE Water Side Outlet Temperature
- HE Glycol Side Inlet Temperature
- HE Glycol Side Outlet Temperature

Safety Checks

There are two possible installation configurations for the plate heat exchanger and each has differing effects on the specific safety operations. They are as follows:

Water Side Economizer Isolation: The plate heat exchanger isolates only the Waterside Economizer.

Primary Loop Isolation: The plate heat exchanger isolates the primary loop, including up to two chiller barrels, and if present, the Waterside Economizer.

Water Side Economizer Isolation Freeze Protection

While the chiller is in Off Mode, if any of the three exchanger temperature sensors drop below 35°F the following events will happen:

- The mixing valve will fully open.
- The primary and secondary pumps will be activated.

The pumping operations will continue until both glycol side sensors are at or above 36° F and the water outlet sensor is at or above 40° F.

While the chiller is in Chilling Mode, if the Glycol Side Inlet Temperature drops below 35°F, the secondary mixing valve will modulate more closed as necessary to keep the inlet temperature at or above 35°F. This modulation should not open the valve more than is demanded by the primary temperature modulation.

Primary Loop Isolation Freeze Protection

While the chiller is in Off Mode, if any of the three exchanger temperature sensors drop below 35°F, the following events will happen.

- The secondary pumping will be activated
- The primary pumping will remain inactive.

Pumping operations will continue until both glycol side sensors are at or above 36°F and the water outlet sensor is at or above 40°F.

While the chiller is in chilling mode, if the glycol side inlet temperature drops below 35°F and the mechanical chilling is active, all mechanical chilling (emergency shutdown action) will be deactivated and locked out. An alarm will be generated to indicate mechanical chilling lockout due to freeze protection.

While the chiller is in chilling mode, if the glycol side inlet temperature drops below 35°F and the mechanical chilling is not active, the primary mixing valve will modulate more closed as necessary to keep the inlet temperature at or above 35°F. This modulation should not open the valve more than is demanded by the current temperature modulation.

Chiller Pumping Module - Water Circuit Pumping Operation

Water Circuit Pumping Operation

The water circuit pumping operation provides all pump operations for chilled water in the chiller and optionally in the building, except for the glycol circuit pump which is managed by the water side economizer.

Pumping Operation

The Water Circuit Pumping has two base modes of operation: Off Mode and Pumping Mode.

The pumping action operates in one of four modes:

- **Primary Only Fixed Speed Pumping** Pumping activates a fixed speed pump only.
- **Primary Only Variable Speed Pumping** Pumping activates a variable speed pump and modulates the pump speed to control building differential pressure.
- **Primary and Secondary Pumping -** Pumping activates a fixed speed primary pump and a variable speed secondary pump. It modulates the secondary pump speed to control building differential pressure.
- **Dual Primary and Secondary** Based on a command from the chiller controller, pumping activates one or two fixed speed primary pumps and a variable speed secondary pump. It modulates the secondary pump speed to control building differential pressure.

For any pump, which has a redundant pump, only one of the two pumps will operate at any given time. Changeover may occur in one of three ways:

- Changeover on failure.
- Lead/Lag balancing changeover only at pump startup, the pump with lowest run time will activate.
- Demand based Lead/Lag balancing, pump changeover can occur while system is running based on direct command or maximum runtime differential. This changeover requires proper setup of pump VFDs to have matched ramp up and ramp down profiles so the lag pump can spin up while the lead pump spins down. These profiles must be relatively short so emergency pump shutdown operations can work properly. Demand based Lead/Lag balancing automatically includes pump startup balancing, the pump with the lowest run time will activate on a startup.

Lead/Lag Operation and Backup Pump

If Lead/Lag Operation is configured, a Lead/Lag calculation is performed every seven days at which point the module will switch to the pump with the least amount of run time. This pump changeover can occur while running or upon start-up. This feature can be disabled by setting the changeover time to 0 hours. There is no "direct command" to force the pump changeover. If the lead pump is locked out, then the lag pump will come on.

If Lead/Lag Operation is not configured and the lead pump is locked out, the backup pumps will come on using the same sequence as the lead pump.

Off Mode

In Off Mode, all pumps will turn off.

Pumping Mode

If variable speed pumping is used, the appropriate primary pump will activate and begin operation at the Pump Starting Setpoint.

Chillers with dual primaries might only activate one pump. The other pump can activate at any future point in operation, and either pump can deactivate at any point in chiller operation without the chiller going to Off Mode.

If the chiller has a secondary pump, the module will wait for the primary circuit to prove water flow The proving is only required for one circuit when there are dual primaries. The appropriate secondary pump will then activate.

If there is a variable speed pump, the VFD speed output will modulate using a PID control loop to regulate the building pressure differential to the Building Pressure Differential Setpoint.

If the VFD speed is at minimum and the building pressure differential is still above setpoint, the bypass valve will modulate open to regulate the building pressure differential. The VFD speed will not modulate until the bypass valve modulates closed.

Trend Logs

DX Barrel Chiller Trend Logs

There are instances in the trend logs where a "#" is used in place of a value. These are references to the different barrels, circuits, and compressors that may be present on the system. For example, B1C1Flt would indicate a fault on Barrel 1, Circuit 1. See **Tables 8-16**, pages 34 through 36, for alarm bit string definitions.

Item Description	Log Abbreviation (Unit)
Date	Date (Day Month)
Time	Time (24 Hr.)
Mode of Operation	Mode (Enumerated)*
HVAC Mode	HVAC (Enumerated)*
Leaving Water Temp	LvgH2O (°F)
Leaving Water Setpoint	Lvg SP (°F)
Entering Water Temp	EntrH2O (°F)
Barrel 1 Water Temp	Brl1H2O (°F)
Barrel 2 Water Temp	Brl2H2O (°F)
Barrel Water Setpoint	Brl SP (°F)
Outdoor Air Temp	OAT (°F)
Proof of Water Flow 1	POWF 1
Proof of Water Flow 2	PWF 2
H20 Flow Rate	H2ORate (GPM)
Alarm Group 1	AlmGrp1 (Bit String)
Alarm Group 2	AlmGrp2 (Bit String)
Alarm Group 3	AlmGrp3 (Bit String)
Alarm Group 4	AlmGrp4 (Bit String)
Alarm Group 5	AlmGrp5 (Bit String)
Barrel # Circuit # Compressor # Percentage	B#C#C# (%)
Barrel # Circuit # Compressor # Amps	B#C#C#A (amps)
Barrel # Circuit # Suction Pressure	B#C#SP (psi)
Barrel # Circuit # Saturated Suction Temp	B#C#SST (°F)
Barrel # Circuit # Suction Line Temp	B#C#SLT (°F)
Barrel # Circuit # Electronic Expansion Valve Position	B#C#EXV (%)
Barrel # Circuit # Suction SuperHeat	B#C#SSH (°F)
Barrel # Circuit # Condenser Position	B#C#Cnd (%)
Barrel # Circuit # Discharge Pressure	B#C#DP (psi)

Item Description	Log Abbreviation (Unit)
Barrel # Circuit # Saturated Discharge Temp	B#C#SDT (⁰F)
Barrel # Circuit # Discharge Line Temp	B#C#DLT (°F)
Barrel # Circuit # Saturated Liquid Temp	B#C#SLT (°F)
Barrel # Circuit # Liquid Line Temp	B#C#LLT (°F)
Barrel # Circuit # Subcool	B#C#SC (°F)
Barrel # Circuit # Fault	B#C#Flt
Barrel # Circuit # Warning	B#C#Wrn
Barrel # Circuit # Lockout	B#C#Lkt
Sump Temp #	SmpTmp# (°F)
Sump Heater	SmpHtr
Low Sump Level	LoSpLvl
Condenser Pump #	CndPmp #
Condenser Pump # Current	Pmp#Amp (amps)
Condenser Pump # VFD Signal	Pmp#VFD
Condenser Pump # VFD Fault	VFD#FIt
Condenser Pump # Pressure	Pmp#Pres
Evaporative Condenser Alarms	EvapAlm (Bit String)
Relay Status of the CPM Module	CPMRlys (Bit String)
Building Pump Suction Pressure	PumpSP (psi)
Building Pump Discharge Pressure	PumpDP (psi)
Building Pump Differential Pressure	PumpDfP (psi)
Building Pump VFD Signal	Pump VFD (%)
Primary 3-Way Valve	PriVlv (%)
Secondary 3-Way Valve	SecVlv (%)
HE Waterside Outlet	HEWOUT (°F)
HE Glycol Side Inlet	HEGlin (°F)
Primary Outlet Temp	PriOut (°F)
HE Glycol Side Outlet	HEGIOut (°F)
Fan Speed	Waterside Economizer Fan (%)
Condenser Fan Position Alarms	CPMAIms (Bit String)

Table 8: Trend Log Descriptions

Trend Log Alarm Bit Strings

ALARM GROUP 1			
Bit	Value	Description	
0	1	Sensor Failure	
1	2	Entering Water Sensor	
2	4	Leaving Water Sensor	
3	8	Barrel #1 Out Sensor	
4	16	Barrel #2 Out Sensor	
5	32	Outdoor Air Sensor	

Table 9: Alarm Group 1 Bit String

ALARM GROUP 2				
Bit	Value	Description		
0	1	Mechanical Failure		
1	2	#1 Water Proving Failure		
2	4	#2 Water Proving Failure		
3	8	Emergency Contact		
4	16	Phase Loss		
5	32	High Speed Recovery		

Table 10: Alarm Group 2 Bit String

	ALARM GROUP 3			
Bit	Value	Description		
0	1	Failure Modes		
1	2	Bad Leaving Water Temp		
2	4	Low Leaving Water Cutoff		

Table 11: Alarm Group 3 Bit String

ALARM GROUP 4		
Bit	Value	Description
0	1	Expansion Boards
1	2	RSM Module B1:C1
2	4	RSM Module B2:C1
3	8	RSM Module B1:C2
4	16	RSM Module B2:C2
5	32	RSM Module B1:C3
6	64	CPM Module
7	128	Evap Module
8	256	Vestibule Module #1
9	512	Vestibule Module #2

Table 12: Alarm Group 4 Bit String

	ALARM GROUP 5		
Bit	Value	Description	
0	1	Module Alarms	
1	2	RSM Module B1:C1	
2	4	RSM Module B2:C1	
3	8	RSM Module B1:C2	
4	16	RSM Module B2:C2	
5	32	RSM Module B1:C3	
6	64	CPM Module	
7	128	Evap Module	
8	256	Vestibule Module #1	
9	512	Vestibule Module #2	

Table 13: Alarm Group 5 Bit String

	CPM MODULE ALARMS		
Bit	Value	Description	
0	1	Waterside Economizer Not Operating	
1	2	Freeze Protection Running	
2	4	Primary Mixing Valve Outlet Temp Sensor Failure	
3	8	Primary Mixing Valve Feed Temp Sensor Failure	
4	16	Heat Exchanger Secondary Side Inlet Temp Sensor Failure	
5	32	Heat Exchanger Secondary Side Outlet Temp Sensor Failure	
6	64	VFD Fault	
7	128	Primary A Pump 1 Lockout	
8	256	Primary A Pump 2 Lockout	
9	512	Secondary Pump 1 Lockout	
10	1024	Secondary Pump 2 Lockout	
11	2048	Primary B Pump 1 Lockout	
12	4096	Primary B Pump 2 Lockout	
13	8192	Building Maximum Pressure Exceeded	
14	16384	Pumping System Locked-Out	
15	32768	Glycol Feeder Low	

Table 14: CPM Module Alarms Bit String

Trend Log Alarm Bit Strings

Bit	Value	Description	
0	1	Sump Heater Status (1: Cannot Run)	
1	2	Low Sump Level	
2	4	No Pump 1 Pressure Signal	
3	8	No Pump 2 Pressure Signal	
4	16	Pump 1 VFD Fault	
5	32	Pump 2 VFD Fault	
6	64	Sump Temp 1 Not Detected	
7	128	Sump Temp 2 Not Detected	
8	256	Sump Temp 3 Not Detected	
9	512	Evaporative Condenser Lockout 1	
10	1024	Evaporative Condenser Lockout 2	
11	2048	Low Sump Temp 1	
12	4096	Pump 1 Low Current	
13	8192	Pump 1 High Current	
14	16384	Pump 2 Low Current	
15	32768	Pump 2 High Current	

EVADODATIVE CONDENSED AL ADMS

Table 15: Evaporative Condenser Alarms Bit String

CPM RELAYS			
Bit	Value	Description	
0	1	CP Primary A Pump 1 Running	
1	2	CP Primary A Pump 2 Running	
2	4	CP Secondary Pump 1 Running	
3	8	CP Secondary Pump 2 Running	
4	16	CP Primary B Pump 1 Running	
5	32	CP Primary B Pump 2 Running	

Table 16: CPM Relays Bit String

Trend Log Bit String Decoding

Bit string values allow the manipulation of binary data in useful ways. For instance, a single trend log item may need to represent multiple simultaneous true conditions. An example would be a trend log item indicating what binary inputs are currently active, what relays are currently active, or what alarms are currently active. A single bit string value can be decoded to determine which multiple conditions might be simultaneously true. This section is not intended to be a full explanation of how bit strings work, but to explain how to decode the trend log items that are indicated as being bit string values.

Determine Active Binary Inputs When a Trend Item Was Recorded

Binary Inputs	Bit String Values
0	No Binary Inputs Active
1	Fan Proving
2	Dirty Filter
4	Hood On/Off
8	Remote Occupied
16	Remote Cooling
32	Remote Heating
64	Remote Dehumidification
128	Emergency Shutdown

Example 1

- 1. If the trend log bit string value is 22 for Binary Inputs, first identify the highest value shown above that can be subtracted from 22. In this example, that would be 16 (Remote Cooling). The Remote Cooling binary input is currently active.
- 2. From the remainder of 6 (22 16 = 6), subtract the next highest possible number. That would be 4 (Hood On/ Off). The Hood On/Off binary input is currently active.
- 3. From the remainder of 2 (6-4=2), subtract the next highest possible number which is 2 (Dirty Filter). The Dirty Filter binary input is also currently active.
- 4. There is no remainder (2-2=0), so there are no more inputs that are active.

With this example, from one value of 22 the formula above determined that three binary inputs were active when that trend item was recorded.
Alarms and Faults

Waterside Economizer VFD Fault

If the VFD is indicating a fault, an alarm will generate and operations will continue as if the VFD were operational.

Waterside Economizer Primary Outlet (Leaving Water) Temperature Sensor Failure

If the Waterside Economizer Primary Outlet (Leaving Water) Temperature Sensor fails, an alarm will indicate the sensor failure. If the Chiller Leaving Water Temperature is available, it will be used as the outlet temperature.

If the Chiller Leaving Water Temperature is not available, the Waterside Economizer will be forced to the Off Mode condition. An additional alarm will indicate the Waterside Economizer is not operating.

If the chiller has a plate heat exchanger in a primary loop isolation configuration, the outlet temperature will continue to be used.

Suction Pressure Sensor Failure

If the Suction Pressure Sensor fails, an alarm will indicate the sensor failure. Operation will continue with an assumed suction pressure of 0 psig.

Discharge Pressure Sensor Failure

If the Discharge Pressure Sensor fails, an alarm will indicate the sensor failure. All pumps will shut down and the chiller will be forced to off mode. All pumping operations will be locked out.

Main DX Barrel Chiller Controller LED Diagnostics

Main DX Barrel Chiller Controller LEDs

The Main DX Barrel Chiller Controller is equipped with LEDs that can be used to verify operation and perform troubleshooting. There are LEDs for communication, operation modes, and diagnostic codes. See **Figure 11, page 39**, for the LED locations. The LEDs associated with these inputs and outputs shows what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs

POWER: This green LED will light up to indicate that 24 VAC power has been applied to the controller.

APP HB: This green LED will light up and blink continuously to indicate the application software is working properly.

OS HB: This green LED will light up and blink continuously to indicate the operating system is working properly.

WDOG: This green LED will light up and stay lit to indicate the operating system is working properly.

Diagnostic LEDs

ALARM: This red LED is a diagnostic blink code LED. It will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display.

STATUS 1: This red LED is a diagnostic blink code LED. Under normal operation, it should not be blinking. If the LED is blinking non-stop along with Status 2 LED, the controller is resetting factory defaults or there is an output Force Mode active.

STATUS 2: This red LED is a diagnostic blink code LED. If the software is running, this LED should blink at a rate of one blink every 10 seconds. If the LED is blinking non-stop along with Status 1 LED, the controller is resetting factory defaults or there is an output Force Mode active.

Communication LEDs

EBUS: This yellow LED will blink to signal E-BUS communications.

BACNET: This yellow LED will light up and blink continuously to indicate BACnet communications.

Relay LEDs

RLY1 - RLY3: These green LEDs will light up when the relay is enabled and will stay lit as long as it is active.

Binary Input LEDs

BI1: This green LED will light up when the Remote Run/Stop contact is closed.

BI2: This green LED will light up when the Water Flow Switch 1 is open.

BI3: This green LED will light up when the Water Flow Switch 2 is open.

BI4: This green LED will light up when the Safety Shutdown contact is closed.

BI5: This green LED will light up when the Phase Brownout contact is closed.

Main DX Barrel Chiller Controller LED Locations

Figure 11: Main DX Barrel Chiller Controller LED Locations

Refrigerant Module LED Diagnostics

Refrigerant Module LEDs

The Chiller Refrigerant Module is equipped with LEDs that can be used to verify operation and perform troubleshooting. There are LEDs for communication, operation modes, and diagnostic codes. See **Figure 12, page 41**. The LEDs associated with these inputs and outputs show what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs

POWER: This green LED will light up to indicate that 24 VAC power has been applied to the controller.

WDOG: This green LED is not currently used.

Diagnostic LEDs

ALARM: This red LED is a diagnostic blink code LED. It will light up and blink when there is an alarm present. The type of alarm will display on the LCD display.

STATUS 1: This red LED is a diagnostic blink code LED. If the LED is blinking at a rate of 1 blink every 10 seconds, the module is in the Off mode. If the LED is blinking two blinks every 10 seconds, the module is in the Cool Mode.

STATUS 2: This red LED is not used.

Communication LED

EBUS: This yellow LED will blink to signal E-BUS communications.

COMM1: This yellow LED is not used.

COMM2: This yellow LED is not used.

Relay LEDs

RLY1 - RLY3: These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

Refrigerant Module Binary Input LEDs

BI1: This green LED indicates Compressor 1 Status and will light up when Compressor 1 is running.

BI2: This green LED indicates Compressor 2 Status and will light up when Compressor 2 is running.

BI3: This green LED will be lit when the Compressor 1 VFD Fault contact indicates normal operating status. If the LED turns off then there is a VFD Fault Condition.

BI4: This green LED will light up when the Circuit Disable Switch is in the enabled state. When the circuit is disabled, the LED will be off.

BI5: This green LED will light up when the Condenser Fan Fault contact is closed. There can be multiple Condenser fan fault signals wired in series, so if one of the condenser fans are in fault, the LED will be off.

Refrigerant Module LED Locations

Figure 12: Refrigerant Module LED Locations

Chiller Pumping Module LED Diagnostics

Chiller Pumping Module LEDs

The Chiller Pumping Module is equipped with LEDs that can be used to verify operation and perform troubleshooting. See **Figure 13, page 43**. The LEDs associated with these inputs and outputs show what is active without using a voltmeter. The LEDs and their uses are as follows:

Operation LEDs

POWER: This green LED will light up to indicate that 24 VAC power has been applied to the controller.

APP HB: This green LED will light up and blink according to what mode the controller is in. See **Table 17, this page**.

No. of Blinks	APP HB LED
1	Off Mode
2	Economizer Mode
3	Freeze Mode

Table 17: APP HB LED Blink Codes

OS HB: This green LED will light up and blink continuously to indicate the operating system is working properly.

WDOG: This green LED will light up and stay lit to indicate the operating system is working properly.

Diagnostic LEDs

ALARM: This red LED is a diagnostic blink code LED. It will light up and blink the number of alarms present when there is an alarm(s) present. The type of alarm will display on the LCD display.

STATUS 1: This red LED is not used.

STATUS 2: This red LED is not used.

Communication LED

EBUS: This yellow LED will blink to signal E-BUS communications.

COMM1: This yellow LED will turn on when the economizer is unable to operate due to a sensor fault.

COMM2: This yellow LED will turn on to signal economizer maxed out.

Relay LEDs

RLY1 - RLY8: These green LEDs will light up when the relay is enabled and will stay lit as long as it is active.

Binary Input LEDs

BI1: This green LED will be lit when the Waterside Economizer VFD contact indicates normal operating status. If the LED turns off then there is a VFD Fault condition.

BI4: This green LED will be lit when the Chiller Pump VFD Fault Switch 1 contact indicates normal operating status. If the LED turns off then there is a VFD Fault condition.

BI5: This green LED will be lit when the Chiller Pump VFD Fault Switch 2 contact indicates normal operating status. If the LED turns off then there is a VFD Fault condition.

BI6: The Glycol Feeder Low input will normally be off, and will light up green to indicate the Glycol Feeder Low alarm is active.

Chiller Pumping Module LED Locations

Figure 13: Chiller Pumping Module LED Locations

Evaporative Condenser Module LED Diagnostics and Locations

Evaporative Condenser Module LEDs

The Evaporative Condenser Module is equipped with LEDs that can be used to verify operation and perform troubleshooting. See **Figure 14, this page**, for the LED locations. The LEDs associated with these inputs and outputs show what is active without using a voltmeter. The LEDs and their uses are as follows:

Diagnostic LEDs

STATUS: If the software is running, this LED should blink at a rate of one blink per second.

ALARM (on board): This red LED will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display. The ALARM LED also blinks when the expansion valve is initializing at startup.

ALARM (above LCD display): This red LED will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display. The ALARM LED also blinks when the expansion valve is initializing at startup.

COMM: Every time the module receives a valid E-BUS request from the Main DX Barrel Chiller Controller, this LED will blink on and then off, signifying that it received a valid request and responded.

POWER: This LED will light up to indicate that 24 VAC power has been applied to the module.

Binary Input LEDs

Bl1: This green LED will light up when the Condenser Pump 1 Pressure switch contact is closed.

BI2: This green LED will light up when the Condenser Pump 2 Pressure switch contact is closed.

BI3: This green LED will light up when the Condenser Pump 1 VFD Fault contact is closed.

BI4: This green LED will light up when the Condenser Pump 2 VFD Fault contact is closed.

Relay LEDs

RLY1 - RLY4: These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

Figure 14: Evaporative Condenser Module LEDs

Vestibule Module LED Diagnostics

Vestibule Module LEDs

The Vestibule Module is equipped with LEDs that can be used to verify operation and perform troubleshooting. See **Figure 15**, **this page**. The LEDs associated with these inputs and outputs show what is active without using a voltmeter. The LEDs and their uses are as follows:

Diagnostic LEDs

STATUS: If the software is running, this LED should blink at a rate of one blink per second.

ALARM (on board): If the module does not receive communications for more than one minute, this LED will light up and the relays will turn off.

ALARM (above LCD display): This red LED will light up and stay lit when there is an alarm present. The type of alarm will display on the LCD display.

COMM: Every time the module receives a valid E-BUS request from the Main DX Barrel Chiller Controller, this LED will blink on and then off, signifying that it received a valid request and responded.

POWER: This LED will light up to indicate that 24 VAC power has been applied to the controller.

Binary Input LEDs

BI1: This green LED will light up when Chiller Run Status contact is closed.

BI2: This green LED will light up when Leak Detector contact is closed.

BI3: This green LED will light up when the Coil Pump Water Flow Switch is closed.

Relay LEDs

RLY1 - RLY4: These green LEDs will light up when the relays are enabled and will stay lit as long as they are active.

Figure 15: Vestibule Module LEDs

Thermistor Sensor Testing

Temperature/Resistance for Thermistor Sensors

The following sensor voltage and resistance table is provided to aid in checking sensors that appear to be operating incorrectly. Many system operating problems can be traced to incorrect sensor wiring. Be sure all sensors are wired per the wiring diagrams in this manual.

If the sensors still do not appear to be operating or reading correctly, check voltage and/or resistance to confirm that the sensor is operating correctly per the tables. Please follow the notes and instructions that appear after the chart when checking sensors.

Thermistor Sensor Testing Instructions

Use the resistance column to check the thermistor sensor while disconnected from the controllers (not powered).

Use the voltage column to check sensors while connected to powered controllers. Read voltage with meter set on DC volts. Place the "-" (minus) lead on GND terminal and the "+" (plus) lead on the sensor input terminal being investigated.

Temperature and Resistance – Voltage for Type III 10 K ohm Thermistor Sensors							
Temp (°F)	Temp (ºC)	Resistance (Ohms)	Voltage @ Input (VDC)	Temp (ºF)	Temp (°C)	Resistance (Ohms)	Voltage @ Input (VDC)
-10	-23.3	93333	4.51	72	22.2	11136	2.635
-5	-20.6	80531	4.45	73	22.8	10878	2.605
0	-17.8	69822	4.37	74	23.3	10625	2.576
5	-15	60552	4.29	75	23.9	10398	2.549
10	-12.2	52500	4.2	76	24.4	10158	2.52
15	-9.4	45902	4.1	77	25	10000	2.5
20	-6.6	40147	4.002	78	25.6	9711	2.464
25	-3.9	35165	3.891	80	26.7	9302	2.41
30	-1.1	30805	3.773	82	27.8	8893	2.354
35	1.7	27140	3.651	84	28.9	8514	2.3
40	4 4.4	23874	3.522	86	30	8153	2.246
45	7.2	21094	3.39	88	31.1	7805	2.192
50	10	18655	3.252	90	32.2	7472	2.139
52	11.1	17799	3.199	95	35	6716	2.009
54	12.2	16956	3.143	100	37.8	6047	1.884
56	13.3	16164	3.087	105	40.6	5453	1.765
58	14.4	15385	3.029	110	43.3	4923	1.65
60	15.6	14681	2.972	115	46.1	4449	1.54
62	16.7	14014	2.916	120	48.9	4030	1.436
64	17.8	13382	2.861	125	51.7	3656	1.339
66	18.9	12758	2.802	130	54.4	3317	1.246
68	20	12191	2.746	135	57.2	3015	1.159
69	20.6	11906	2.717	140	60	2743	1.077
70	21.1	11652	2.691	145	62.7	2502	1.001
71	21.7	11379	2.661	150	65.6	2288	0.931

NOTE: If the voltage is above 4.88 VDC, the sensor or wiring is open. If the voltage is less than 0.05 VDC, the sensor or wiring is shorted.

Table 18: Temperature and Resistance for Type III 10K ohm Thermistor Sensors

Suction Pressure Transducer Testing

0 - 250 PSI Suction Pressure Transducer Testing for R410-A Refrigerant

The Evaporator Coil Temperature is calculated by converting the Suction Pressure to Temperature. The Suction Pressure is obtained by using the 0 - 250 PSI Suction Pressure Transducer, which is connected into the suction line of the compressor.

Use the voltage column to check the Suction Pressure Transducer while connected to the refrigeration module(s). The Main DX Barrel Chiller Controller and the refrigeration module(s) must be powered for this test. Read voltage with a meter set on DC volts. Place the positive lead from the meter on the +5V terminal located on the module(s) terminal block. Place the negative lead from the meter on the ground (GND) terminal located adjacent to the +5V terminal on the module(s) terminal block. Use a refrigerant gauge set and/or an accurate electronic thermometer to measure the temperature or suction line pressure near where the Suction Pressure Transducer is connected to the suction line. Measure the voltage at the +5V and GND terminals and compare it to the appropriate chart depending on the refrigerant in use. If the temperature/voltage or pressure/voltage readings do not align closely with the chart, the Suction Pressure Transducer is probably defective and will need to be replaced.

0-250 PSI Suction Pressure Transducer Coil							
	Press	sure, Tempera	ture, and Volt	age Chart for	R410-A Refrig	erant	
Temeprature °F	Temperature ⁰C	Pressure PSI	Signal DC Volts	Temperature °F	Temperature °C	Pressure PSI	Signal DC Volts
21.19	-6.01	80.94	1.8	56.76	13.76	161.88	3.1
24.49	-4.17	87.16	1.9	59.03	15.02	168.10	3.2
27.80	-2.33	93.39	2.0	61.17	16.21	174.32	3.3
30.99	-0.56	99.62	2.1	63.19	17.33	180.55	3.4
33.89	1.05	105.84	2.2	65.21	18.45	186.78	3.5
36.80	2.67	112.07	2.3	67.23	19.57	193.00	3.6
39.71	4.28	118.29	2.4	69.24	20.69	199.23	3.7
42.30	5.72	124.52	2.5	71.15	21.75	205.46	3.8
44.85	7.14	130.75	2.6	72.95	22.75	211.68	3.9
47.39	8.55	136.97	2.7	74.76	23.76	217.91	4.0
49.94	9.97	143.2	2.8	76.57	24.76	224.14	4.1
52.23	11.24	149.42	2.9	78.37	25.76	230.36	4.2
54.50	12.50	155.65	3.0	80.18	26.77	236.59	4.3

 Table 19: 0-250 PSI Suction Pressure Transducer Coil Pressure, Temperature, and Voltage Chart for R410-A Refrigerant

Discharge Pressure Transducer Testing

Discharge Pressure Sensor Testing 0-667 PSI

The Discharge Pressure is obtained by using the Discharge Pressure Sensor, which is connected into the discharge line of the compressor.

Use the voltage column to check the Discharge Pressure Sensor while connected to the refrigeration module(s). The module must be powered for this test. Read voltage with a meter set on DC volts. Place the positive lead from the meter on the +5V input terminal located on the module. Place the negative lead from the meter on the ground terminal located adjacent to the +5V terminal on the module. Use a refrigerant gauge set to measure the suction line pressure near where the Discharge Pressure Sensor is connected to the discharge line. Measure the voltage at the terminals +5V and GND terminals and compare it to the appropriate chart depending on the refrigerant in use. If the pressure/voltage readings do not align closely with the chart, the Discharge Pressure Sensor is probably defective and will need to be replaced.

Discharge Pressure Transducer Pressure – Voltage Chart for R410-A Refrigerant 0-667 PSI			
Pressure PSI	Signal DC Volts	Pressure PSI	Signal DC Volts
20	0.62	360	2.66
40	0.74	380	2.78
60	0.86	400	2.9
80	0.98	420	3.02
100	1.1	440	3.14
120	1.22	460	3.26
140	1.34	480	3.38
160	1.46	500	3.5
180	1.58	520	3.62
200	1.7	540	3.74
220	1.82	560	3.86
240	1.94	580	3.98
260	2.026	600	4.1
280	2.18	620	4.22
300	2.3	640	4.34
320	2.42	660	4.46
340	2.54		

 Table 20: Discharge Pressure and Voltage Chart for

 Discharge Pressure Sensors

LCD Display, Navigation Keys and Editing Keys

LCD Display Screen and Navigation Keys

The LCD display screens and buttons show status and alarms, and enable force modes. See Figure 16, this page, and refer to Table 21 and Table 22, this page, for key functions.

Figure 16:	LCD Display	Screen and	Navigation	Keys
			<u> </u>	

Navigation Key	Key Function
MENU	Use the MENU key to move through screens within Main Menu categories and return to the Main Menu while at other screens.
UP	Use this key to adjust setpoints and change configurations.
DOWN	Use this key to adjust setpoints and change configurations.
ENTER	Use the ENTER key to navigate through the Main Menu Screen categories.

Table 21: Navigation Key Functions

Editing Key	Key Function
UP or DOWN	Use the UP or DOWN key to enter Edit Mode on a user-adjustable screen. Edit Mode is indicated by the underscore appearing on the screen.
	NOTE: Entering Edit Mode will also adjust the value up one (UP key) or down one (DOWN key).
ENTER	Use the ENTER key to move through the digits in the screen when editing a numeric value. An extended press of the ENTER key saves edits no matter the location of the editing cursor within the digits.
	Press the ENTER key to save a non-numeric value such as Hi Speed Network.
MENU	The MENU key cancels editing when in Edit Mode. The screen being edited will return to its original value and the underscore will disappear. A second press of the MENU key returns the view to the Main Menu.

Table 22: Editing Key Functions

DX BARREL MAIN CONTROLLER - LCD SCREENS

Main Screens Map

Main DX Barrel Chiller Controller Main Screens Map

Refer to the following map when navigating through the Main DX Barrel Chiller Controller Screens. The first screen is an initialization screen. To scroll through the rest of the screens, press the **<MENU>** button.

Settings Screens

Settings Screens

Refer to the following map when navigating through the Settings Screens. From the Settings Screen, press **<ENTER>** to scroll through the screens.

The **<ENTER>** key moves the cursor between the digital fields. Once the cursor is under a field, use the **<UP>** and **<DOWN>** arrow keys to select a number between 0 and 9.

BACnet CURRENT DEVICE ID

A Device ID of up to seven digits can be entered. The **<ENTER>** key moves the cursor between the digital fields. Once the cursor is under a field, use the **<UP>** and **<DOWN>** arrow keys to select a number between 0 and 9.

BACnet CURRENT BAUD RATE The options are 9600, 19200, 38400, 57600, 76800. Default is 38400.

DX BARREL MAIN CONTROLLER - LCD SCREENS

Glycol Screens

Glycol Screens

From the Glycol Screen, press **<ENTER>** to scroll through the screens.

CAUTION: These screens are protected. The Glycol percentage can only be changed with guidance from AAON Controls Engineering. This is to prevent someone from changing the percentage of glycol while someone is running water through the loop. This could cause the system to freeze and cause mechanical damage to the Chiller.

GLYCOL AT %

Use this screen to see the current glycol level. Any changes made to this screen are not saved until validated by a HashCode From AAON Controls Engineering.

KEY CODE le to AAON Controls Engineering. Thi

Submit this code to AAON Controls Engineering. This code will not change until a HashCode has been entered.

Input the code you receive from AAON Controls Engineering to finalize any changes to your glycol percentage. The changed percentage will only be saved once a valid Hashcode has been

0A Temp 78.5°

Status Screens

Status Screens

Refer to the following map when navigating through the Status Screens. From the Status Screen, press **<ENTER>** to scroll through the screens.

DX BARREL MAIN CONTROLLER - LCD SCREENS

Alarms

Alarm Screens

If there are no Alarms, the Alarm Screen will display "No Alarms." If there are alarms present, the screen will display, "Alarms." Press **<ENTER>** to scroll through the alarms or let the alarms automatically scroll on the screen.

This will be shown if there are no current alarms.

Alarm	Description
Inlet SENSOR:	The Chiller Water Inlet Temperature Sensor has failed.
Outlet SENSOR:	The Chiller Water Outlet Temperature Sensor has failed.
Barrel 1 SENSOR:	Barrel 1 Temperature Sensor has failed.
Barrel 2 SENSOR:	Barrel 2 Temperature Sensor has failed.
OAT SENSOR:	The Outdoor Air Temperature Sensor has failed.
WtrFlow1 ALARM:	Water Flow Switch 1 has been disabled.
WtrFlow2 ALARM:	Water Flow Switch 2 has been disabled.
EMG SHUTDOWN:	An emergency shutdown has occurred.
PHASE LOSS:	A phase loss has occurred.
CWOutlet TOO HIGH:	The Chiller Water Outlet Temperature has risen above the Chiller Water Inlet Temperature by 4°F for the Bad Water Out Temp Failure Delay time period.
CWOutlet CUTOFF:	The Chiller Water Outlet Temperature has dropped below the Chiller Water Temperature Cutoff Setpoint.
REFRIG 1 MISSING:	Refrig. Module 1 is not communicating.
REFRIG 2 MISSING:	Refrig. Module 2 is not communicating.
REFRIG 3 MISSING:	Refrig. Module 3 is not communicating.
REFRIG 4 MISSING:	Refrig. Module 4 is not communicating.
REFRIG 5 MISSING:	Refrig. Module 5 is not communicating.
REFRIG 6 MISSING:	Refrig. Module 6 is not communicating.
EVAP Mod MISSING:	The Evaporative Condenser Module is not communicating.
CPM Mod MISSING:	The Chiller Pumping Module is not communicating.
VST1 Mod MISSING:	Vestibule 1 Module is not communicating.
VST2 Mod MISSING:	Vestibule 2 Module is not communicating.
REFRIG 1 ALARMS:	Refrigeration Module 1 has an alarm(s).
REFRIG 2 ALARMS:	Refrigeration Module 2 has an alarm(s).
REFRIG 3 ALARMS:	Refrigeration Module 3 has an alarm(s)
REFRIG 4 ALARMS:	Refrigeration Module 4 has an alarm(s).
REFRIG 5 ALARMS:	Refrigeration Module 5 has an alarm(s).
REFRIG 6 ALARMS:	Refrigeration Module 6 has an alarm(s).
EVAP Mod ALARMS:	The Evaporative Condenser Module has an alarm(s).
CPM Mod ALARMS:	The Chiller Pumping Module has an alarm(s).
VST1 Mod ALARMS:	Vestibule 1 Module has an alarm(s).
VST2 Mod ALARMS:	Vestibule 2 Module has an alarm(s).
UNKNOWN ALARM:	There is an unknown alarm.

Table 23: Main DX Barrel Chiller Controller Alarms

ALARM FAULTS

Main Screens Map

Main Screens Map

Refer to the following map when navigating through the Refrigerant Module Main Screens. To scroll through the screens, press the **<MENU>** button.

RSM - LCD SCREENS

RSM Screens

Refrigerant Module Screens

Refer to the following map when navigating through the Refrigerant Module Screens. Press **<ENTER>** to scroll through the screens.

BARREL # NUMBER OF BARRELS (1-2)

E-BUS COMMUNICATION DIAGNOSTICS This screen shows the number of COMM packets received.

CURRENT BOARD ADDRESS Configure the address according to which board address this module represents—1, 2, 3, 4, 5, 6

Number in parentheses is E-BUS address. Module 1 is 160, Module 2 is 161, Module 3 is 162, Module 4 is 163, Module 5 is 164, Module 6 is 165

C1MINRUN XXX

Status Menu Screens

Status Menu Screens

Refer to the following map when navigating through the Status Screens. From the STATUS MENU Screen, press **<ENTER>** to scroll through the screens.

RSM - LCD SCREENS

Sensor Menu Screens

Sensor Menu Screens

Refer to the following map when navigating through the Sensor Screens. From the SENSOR MENU Screen, press **<ENTER>** to scroll through the screens.

EVAPTEMP XX.X°F

EVAPORATION TEMPERATURE READING FROM INPUT

Setpoint Status Screens

Refer to the following map when navigating through the Screens. From the SETPOINT STATUS Screen, press **<ENTER>** to scroll through the screens.

RSM - LCD SCREENS

Alarm Screens

Alarm Warning Screens

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

WARNING!

This will be displayed if there are active warnings.

NO WARNINGS

This will be shown if there are no current warnings.

Alarm	Description
LOW SUCT PRESSURE:	Low Suction Pressure
LOW SUCT NO START:	Low Suction Pressure Startup
HIGH DISCHPSI:	High Discharge Pressure
DISCHPSI NODETECT:	Cannot detect Discharge Pressure
DLTSENSR NODETECT:	Cannot detect Discharge Line Temperature Sensor
HIGH SUPRHEAT:	High Superheat
FANFAULT INPUT:	Condenser Fan Fault Input
CONDENSR OVERAMPS:	Condenser Over Current
LQUIDPSI NODETECT:	Cannot detect Liquid Line Pressure
LLTSENSR NODETECT:	Cannot detect Liquid Line Temperature Sensor
HIGH DISCHPSI:	High Discharge Pressure Level 2

Table 24: RSM Alarms

FAULTS!

FAULTS! This will be displayed if there are active faults.

NO FAULTS This will be shown if there are no current faults.

Fault	Description
LOW SUCT PRESSURE:	Low Suction Pressure
UNSAFE SUCT PSI:	Unsafe Suction Pressure
HIGH PSI TRIP:	High Discharge Pressure Trip
C1 NO START:	Compressor 1 not running
C2 NO START:	Compressor 2 not running
EVAPTEMP NODETECT:	Cannot detect Suction Line Temperature Sensor
LOW SUPRHEAT:	Low Superheat
HIGH DISCTEMP:	High Discharge Temperature
HIGH DISCTEMP:	High Discharge Temperature Compressor 2
C1 FALSE ACTIVE:	Compressor 1 False Active
C2 FALSE ACTIVE:	Compressor 2 False Active
SUCT PSI NODETECT:	Cannot detect Suction Pressure Temperature Sensor
EMERGNCY SHUTDOWN:	Emergency Shutdown
COMM TIMEOUT:	Modbus Slave Communication Time Out
HIGH SUPRHEAT:	High Superheat
HIGH SAT TEMP	High Saturation Temperature
C1 OVER CURRENT:	Compressor 1 Over Current
C2 OVER CURRENT:	Compressor 2 Over Current
C1 LOW CURRENT:	Compressor 1 Under Current
C2 LOW CURRENT:	Compressor 2 Under Current
COMP VFD INPUT:	Compressor 1 VFD fault

Table 25: RSM Faults

RSM - LCD SCREENS

Alarm Screens

NO LOCKOUTS

This will be shown if there are no current lockouts.

Lockout	Description
SUCT PSI LOCKOUT:	Suction Pressure System Lockout
LOW DISC LOCKOUT:	Low Discharge Pressure Lockout
C1 >AMPS LOCKOUT:	Compressor 1 Over Current Lockout
C2 >AMPS LOCKOUT:	Compressor 2 Over Current Lockout
HIGH DLT LOCKOUT:	High Discharge Temperature Lockout
HIDISPSI LOCKOUT:	High Discharge Pressure System Lockout
LO SUPHT LOCKOUT:	Low Superheat System Lockout
HI SUPHT LOCKOUT:	High Superheat System Lockout
HIGH SAT LOCKOUT:	High Saturation Temperature System Lockout
C1 <amps lockout:<="" th=""><th>Compressor 1 Under Current Lockout</th></amps>	Compressor 1 Under Current Lockout
C2 <amps lockout:<="" th=""><th>Compressor 2 Under Current Lockout</th></amps>	Compressor 2 Under Current Lockout

Table 26: RSM Lockouts

Main Screens Map

Main Screens Map

Refer to the following map when navigating through the Chiller Pumping Module Main Screens. To scroll through the screens, press the **<MENU>** button.

SETPOINT STATUS

Module Screens

Module Screens

Refer to the following map when navigating through the Chiller Pumping Module Screens. From the Waterside Economizer Main Screen, press **<ENTER>** to scroll through the screens.

ISOLATED GLYCOL LOOP NO, WSE, or PRIM/SEC

It will display WSE if the economizer is isolated. It will display PRIM/SEC if the primary and secondary pumping circuits are isolated.

FAHRENHEIT or CELSIUS This screen will be present if the Waterside Economizer is enabled.

CHILLER PUMP CONFIGURATION This screen will be present only if the Chiller Pump is enabled. PRIM FIXED: Primary only with fixed speed pump PRIM VAR: Primary only with variable speed pump PRIM+SEC: Primary and secondary pumps A+B+SEC: Primary A + Primary B + Secondary Pumps

PRIMARY A PUMP CONFIGURATION This screen will be present only if the Chiller Pump is enabled. SINGLE: Only one Primary A pump DUAL: Has backup pump

Module Screens

FAN VFD X.X%

System Status Screens

System Status Screens

Refer to the following map when navigating through the System Status Screens. From the SYSTEM STATUS screen, press **<ENTER>** to scroll through the screens.

System Status Screens

Sensor Status Screens

Sensor Status Screens

Refer to the following map when navigating through the Sensor Status Screens. From the SENSOR STATUS screen, press **<ENTER>** to scroll through the screens.

PRIMARY MIXING VALVE OUTLET TEMPERATURE This screen is only present if Waterside Economizer is enabled.

HEAT EXCHANGER WATER SIDE OUT TEMPERATURE This screen is only present if Waterside Economizer is enabled.

HEAT EXCHANGER GLYCOL SIDE OUTLET TEMPERATURE

This screen is only present if Waterside Economizer is enabled and the module is configured for isolated operation. It shows the Heat Exchanger Glycol Side Outlet Temperature (F/C).

HEAT EXCHANGER GLYCOL SIDE INLET TEMPERATURE This screen is only present if Waterside Economizer is enabled and the module is configured for isolated operation. It shows the Heat Exchanger Glycol Side Inlet Temperature (F/C).

PRIMAFLW FLOWING **PRIMARY A FLOW SWITCH INPUT STATUS** This screen is only present if the Chiller Pump is enabled. Will display "FLOWING" or "NO FLOW". PRIMBFLW FLOWING **PRIMARY B FLOW SWITCH INPUT STATUS** This screen is only present if the Chiller Pump is enabled. Will display "FLOWING" or "NO FLOW". BLDG SUC XXX PSI **BUILDING SUCTION PRESSURE SENSOR TEMPERATURE** This screen is only present if the Chiller Pump is enabled and not configured for Primary Only with Fixed Speed Pumps. It shows the Building Suction Pressure Sensor temperature reading. BLDG DIS XXX PSI **BUILDING DISCHARGE PRESSURE SENSOR TEMPERATURE**

This screen is only present if the Chiller Pump is enabled and not configured for Primary Only with Fixed Speed Pumps. It shows the Building Suction Pressure Sensor temperature reading.

Alarms Screens

Alarms Screen

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

NO ALARMS This will be shown if there are no current alarms.

Alarm	Description
WSE NOT OPERATE:	The Waterside Economizer is not operating.
IN FRZ PROTECT:	In Freeze Protection Mode.
PRIM OUT NO SENSE:	The primary mixing valve outlet temperature sensor has failed.
HE WTOUT NO SENSE:	The heat exchanger water out temperature sensor has failed.
HE GL IN NO SENSE:	The heat exchanger glycol inlet temperature sensor has failed.
FAN VFD FAULT:	Fan VFD Fault detected.
SUC SNSR FAULT:	The building suction pressure sensor's reading is out of range.
DIS SNSR FAULT:	The building discharge pressure sensor's reading is out of range.
PMP1 VFD FAULT:	First VFD pump fault detected.
PMP2 VFD FAULT:	Second VFD pump fault detected.
PAP1 LOCKOUT:	Primary A Pump 1 locked out.
PAP2 LOCKOUT:	Primary A Pump 2 locked out.
SEC1 LOCKOUT:	Secondary Pump 1 locked out.
SEC2 LOCKOUT:	Secondary Pump 2 locked out.
PBP1 LOCKOUT:	Primary B Pump 1 locked out.
PBP2 LOCKOUT:	Primary B Pump 2 locked out.
CP SYSTM LOCKOUT:	Chiller pumping system is locked out.
COMM FAULT:	Communications have failed.
SUC SNSR FAIL:	The building suction pressure sensor has failed.
DIS SNSR FAIL:	The building discharge pressure sensor has failed.
DIFF PRS FAULT:	The building differential pressure is out of range.
SUC INIT FAIL:	The building suction pressure sensor initialization has failed.
DIS INIT FAIL:	The building discharge pressure sensor initialization has failed.
GLYCFEED LOW:	The glycol level in the glycol feeder is low

Table 27: Chiller Pumping Module Alarms

Alarms History Screen

Alarms History Screen

The ALARMS HISTORY screen will display the last occurrence of the given alarm in minutes if the last occurrence was 60 minutes or less, hours if the last occurrence was 72 hours or less, days if the last occurrence was 30 days or less and 0 if the last occurrence was over 30 days or the alarm has not been triggered since power up. Alarm histories are only kept as long as the unit is powered; they clear on loss of power.

ALARMS	-
HISTORY	

This screen will only display if there are alarms that have occurred in the past 30 days.

WSE NOOP ## MIN/HR/DAY: This screen is only present if the Waterside Economizer is enabled. Time since last occurrence of Waterside Economizer is Not Operating Alarm.

FRZ PROT ## MIN/HR/DAY: This screen is only present if the Waterside Economizer is enabled. Time since last occurrence of Freeze Protection Mode Alarm.

PRIM OUT ## MIN/HR/DAY: This screen is only present if the Waterside Economizer is enabled. Time since last occurrence of Primary Mixing Valve Outlet Temperature Sensor Failure detection.

HE WTOUT ## MIN/HR/DAY: This screen is only present if Waterside Economizer is enabled. Time since last occurrence of Heat Exchanger Waterside Out Temperature Sensor Failure detection.

HE GL IN ## MIN/HR/DAY: This screen is only present if Waterside Economizer is enabled. Time since last occurrence of Heat Exchanger Glycol Side Inlet Sensor Failure detection.

FAN VFD ## MIN/HR/DAY: This screen is only present if Waterside Economizer is enabled. Minutes since last occurrence of a Fan VFD fault.

PMP1 VFD ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled. Time since last occurrence of a VFD Pump 1 fault.

PMP2 VFD ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled and not configured for Primary Only with Fixed Speed Pump. Time since last occurrence of a VFD Pump 2 fault.

PAP1 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled. Time since last occurrence of a Primary A, Pump 1 Lockout.

PAP2 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled and primary A is configured for backup. Time since last occurrence of a Primary A, Pump 2 Lockout.

SEC1 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled and configured for a secondary. Time since last occurrence of a Secondary Pump 1 Lockout.

SEC2 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled, configured for a secondary and the secondary is configured for backup. Time since last occurrence of a Secondary Pump 2 Lockout.

PBP1 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled and is configured for Primary A + Primary B + Secondary. Time since last occurrence of a Primary B, Pump 1 Lockout.

PBP2 LCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled, is configured for Primary A + Primary B + Secondary and Primary B is configured for backup. Time since occurrence of a Primary B, Pump 2 Lockout.

The Chiller Pump LOCK ## MIN/HR/DAY: This screen is only present if the Chiller Pump is enabled. Time since last occurrence of a Chiller Pumping System Lockout.

COMM FLT ## MIN/HR/DAY: Time since last occurrence of a communications fault.

Setpoint Status Screens

Setpoint Status Screens

Refer to the following map when navigating through the Screens. From the SETPOINT STATUS screen, press **<ENTER>** to scroll through the screens.

LEAVING WATER TEMPERATURE TARGET SETPOINT This screen is only present if the Waterside Economizer is enabled. Range is 0.0 to 70.0°F

FREEZE PROTECT SETPOINT FOR WATERSIDE ECONOMIZER AND HEAT EXCHANGER

This screen is only present if the Waterside Economizer is enabled. Range is 0.0 to 50.0 $^{\circ}{\rm F}$

HEAT EXCHANGER GLYCOL SIDE MINIMUM INLET TEMPERATURE SETPOINT

This screen is only present if the Waterside Economizer is enabled and the module is configured for isolated operation. Range is 32.0 to 50.0°F

FAN STAGE UP DELAY SETPOINT

This screen is only present if the Waterside Economizer is enabled. Range is 0 to 30 seconds

VFD MIN ##%

FAN VFD MINIMUM OPERATING SPEED IN PERCENT This screen is only present if the Waterside Economizer is enabled. Range is 10 to 50%

PRIMARY MIXING VALVE SLOW OPENING RATE USED IN BRINGING WATERSIDE ECONOMIZER ON-LINE WITH COM-PRESSORS RUNNING

This screen is only present if the Waterside Economizer is enabled. Range is 1 to 30 minutes

PRIMARY MIXING VALVE SLOW CLOSING RATE USED IN DISABLING WATERSIDE ECONOMIZER WHILE COMPRESSORS ARE RUNNING

This screen is only present if the Waterside Economizer is enabled. Range is 1 to 30 minutes

TARGET DIFFERENTIAL BUILDING PRESSURE

This screen is only present if the Chiller Pump is enabled and not configured for Primary Only with Fixed Speed Pumps. Range is 0 to 100 psi.

Setpoint Status Screens

BLDG MAX XXX PSI

MAXIMUM BUILDING PRESSURE

This screen is only present if the Chiller Pump is enabled and not configured for Primary Only with Fixed Speed Pumps. It sets the maximum allowed building pressure from 0 to 200 psi.

PROOF OF FLOW START

This screen is only present if the Chiller Pump is enabled and is configured for Primary Only with Fixed Speed Pumps. It sets how many seconds the pump will run before it is considered a failed start.

Range is 0 to 300 seconds.

Pump Runtime Screens

Pump Runtime Screens

Refer to the following map when navigating through the Screens. From the PUMP RUNTIME screen, press **<ENTER>** to scroll through the screens.

Module Screens

Main Screens Map and Module Screens

Main Screens Map

Refer to the following map when navigating through the LCD Main Screens. To scroll through the screens, press the **<MENU>** button.

Refer to the following map when navigating through the Evaporative Condenser Screens. From the EVAP COND Screen, press **<ENTER>** to scroll through the screens.

Status Menu Screens

Status Menu Screens

Refer to the following map when navigating through the Status Screens. From the SYSTEM MENU Screen, press **<ENTER>** to scroll through the screens.

Sensor Menu Screens

Sensor Menu Screens

Refer to the following map when navigating through the Sensor Screens. From the SENSOR MENU Screen, press **<ENTER>** to scroll through the screens.

EVAPORATIVE CONDENSER - LCD SCREENS

Alarms Screen

Alarms Screen

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

NO ALARMS This will be shown if there are no current alarms.

Alarm	Description
EBUS COMM NODETECT:	E-BUS communications not detected.
SUMP HTR BLOCKED:	Sump Heater blockage detected.
LOW SUMP LEVEL!:	Low Sump Level detected.
NO PUMP1 PRESSURE:	Pump 1 no pressure detected.
NO PUMP2 PRESSURE:	Pump 2 no pressure detected.
PUMP1VFD FAULT!:	Pump 1 VFD Fault
PUMP2VFD FAULT!:	Pump 2 VFD Fault
TEMP1 NODETECT:	Sump 1 Temperature Sensor not detected.
TEMP2 NODETECT:	Sump 2 Temperature Sensor not detected.
TEMP3 NODETECT:	Sump 3 Temperature Sensor not detected.
CONDSR 1 LOCKOUT:	Condenser 1 has a lockout condition.
CONDSR 2 LOCKOUT:	Condenser 2 has a lockout condition.
LOW SUMP TEMP:	Low Sump Temperature detected.
PUMP1 LO LOCKOUT:	Pump 1 Low Amperage lockout.
PUMP1 HI LOCKOUT:	Pump 1 High Amperage lockout.
PUMP2 LO LOCKOUT:	Pump 2 Low Amperage lockout.
PUMP2 HI LOCKOUT:	Pump 2 High Amperage lockout.

Table 28: Evaporative Condenser Alarms

Setpoint Status Screens

Setpoint Status Screens

Refer to the following map when navigating through the Setpoint Status Screens. From the SETPOINT STATUS Screen, press **<ENTER>** to scroll through the screens.

VESTIBULE MODULE - LCD SCREENS

Main Screens Map and Module Screens

Vestibule Main Screens Map

Refer to the following map when navigating through the Vestibule LCD Main Screens. To scroll through the screens, press the **<MENU>** button.

Refer to the following map when navigating through the Vestibule Module Screens. From the VEST Screen, press **<ENTER>** to scroll through the screens.

Status, Alarm and Setpoint Screens

System Status Screens

Refer to the following map when navigating through the SYSTEM STATUS Screens. From the SYSTEM STATUS Screen, press **<ENTER>** to scroll through the screens.

Sensor Status Screens

Refer to the following map when navigating through the SYSTEM STATUS Screens. From the SYSTEM STATUS Screen, press **<ENTER>** to scroll through the screens.

Alarms Screen

If an alarm is present, the ALARM LED above the LCD display will light up red and blink. The Alarms will display and scroll automatically from the ALARMS screen when alarms are present.

NO ALARMS

This will be shown if there are no current alarms.

Alarm	Description
VestTemp FAIL:	Vestibule Temperature Sensor not detected.
Out Temp FAIL:	Outdoor Air Temperature Sensor not detected.
WFS LOSS:	Water Flow Switch open.
LeakDetc FAIL:	Leak Detector Sensor closed.

Table 29: Vestibule Module Alarms

Setpoint Status Screens

Refer to the following map when navigating through the Setpoint Status Screens. From the SETPOINT STATUS Screen, press **<ENTER>** to scroll through the screens.

OUTDOOR AIR TEMPERATURE READING

MS/TP Connection

Wiring Notes:

- 1. All wiring to be in accordance with local and national electrical codes and specifications.
- 2. All communication wiring to be 18-gauge minimum, two-conductor, twisted-pair with
 - shield. Use Belden #82760 or equivalent.

Figure 17: BACnet Connection to MS/TP Network

BACnet Analog Inputs			
Point Type	Number BACnet Point Name		
AI	1	Application Version	
AI	2	Entering Water Temperature	
AI	3	Leaving Water Temperature	
AI	4	Leaving Water Setpoint	
AI	5	Barrel #1 Leaving Water Temperature	
AI	6	Barrel #2 Leaving Water Temperature	
AI	7	Barrel Leaving Water Setpoint	
AI	8	Outdoor Air Temperature	
AI	9	Flow Rate	
AI	10	Vestibule #1 Temperature	
AI	11	Vestibule #2 Temperature	
AI	20	Building Pump Suction Pressure	
AI	21	Building Pump Discharge Pressure	
AI	22	Building Pump Differential Pressure	
AI	23	Building Pump VFD Signal	
AI	24	Building Pump Bypass Valve Position	
AI	30	Waterside Economizer Primary 3-Way Valve	
AI	31	Waterside Economizer Secondary 3-Way Valve	
AI	32	Waterside Economizer Heat Exchanger Waterside Outlet	
AI	33	Waterside Economizer Heat Exchanger Glycol Side Outlet	
AI	34	Waterside Economizer Heat Exchanger Glycol Side Inlet	
AI	35	Waterside Economizer Primary Valve Outlet Temperature	
AI	36	Waterside Economizer Fan Speed	
AI	40	EVAP Sump Temperature #1	
AI	41	EVAP Sump Temperature #2	
AI	42	EVAP Sump Temperature #3	
AI	43	EVAP Pump #1 Amps	
AI	44	EVAP Pump #2 Amps	
AI	45	EVAP Pump #1 VFD Signal	
AI	46	EVAP Pump #2 VFD Signal	
AI	50	Superheat Setpoint	
AI	51	Head Pressure Setpoint	
AI	60	B1:C1 Suction Pressure	
AI	61	B1:C1 Discharge Pressure	
AI	62	B1:C1 Liquid Line Pressure	
AI	63	B1:C1 Calculated Saturation Temp	

	BACnet Analog Inputs			
Point Type	Number	BACnet Point Name		
AI	64	B1:C1 Calculated Discharge Temp		
AI	65	B1:C1 Calculated Liquid Line Temp		
AI	66	B1:C1 Suction Line Temp		
AI	67	B1:C1 Discharge Line Temp		
AI	68	B1:C1 Liquid Line Temp		
AI	69	B1:C1 Superheat Temp		
AI	70	B1:C1 Discharge Superheat Temp		
AI	71	B1:C1 Sub-cooling Temp		
AI	72	B1:C1 Compressor A1 Percentage		
AI	73	B1:C1 Compressor A2 Percentage		
AI	74	B1:C1 Condenser Percentage		
AI	75	B1:C1 Electronic Expansion Valve Position		
AI	76	B1:C1 Compressor 1 Current		
AI	77	B1:C1 Compressor 2 Current		
AI	90	B2:C1 Suction Pressure		
AI	91	B2:C1 Discharge Pressure		
AI	92	B2:C1 Liquid Line Pressure		
AI	93	B2:C1 Calculated Saturation Temp		
AI	94	B2:C1 Calculated Discharge Temp		
AI	95	B2:C1 Calculated Liquid Line Temp		
AI	96	B2:C1 Suction Line Temp		
AI	97	B2:C1 Discharge Line Temp		
AI	98	B2:C1 Liquid Line Temp		
AI	99	B2:C1 Superheat Temp		
AI	100	B2:C1 Discharge Superheat Temp		
AI	101	B2:C1 Sub-cooling Temp		
AI	102	B2:C1 Compressor A1 Percentage		
AI	103	B2:C1 Compressor A2 Percentage		
AI	104	B2:C1 Condenser Percentage		
AI	105	B2:C1 Electronic Expansion Valve Position		
AI	106	B2:C1 Compressor 1 Current		
AI	107	B2:C1 Compressor 2 Current		
AI	120	B1:C2 Suction Pressure		
AI	121	B1:C2 Discharge Pressure		
AI	122	B1:C2 Liquid Line Pressure		
AI	123	B1:C2 Calculated Saturation Temp		
AI	124	B1:C2 Calculated Discharge Temp		
AI	125	B1:C2 Calculated Liquid Line Temp		
AI	126	B1:C2 Suction Line Temp		
AI	127	B1:C2 Discharge Line Temp		

Table 21: BACnet Analog Inputs (continued)

Table 30: BACnet Analog Inputs

I

BACnet Analog Inputs

BACnet Analog Inputs			
Point Type	Number	BACnet Point Name	
AI	128	B1:C2 Liquid Line Temp	
AI	129	B1:C2 Superheat Temp	
AI	130	B1:C2 Discharge Superheat Temp	
AI	131	B1:C2 Sub-cooling Temp	
AI	132	B1:C2 Compressor A1 Percentage	
AI	133	B1:C2 Compressor A2 Percentage	
AI	134	B1:C2 Condenser Percentage	
AI	135	B1:C2 Electronic Expansion Valve Position	
AI	136	B1:C2 Compressor 1 Current	
AI	137	B1:C2 Compressor 2 Current	
AI	150	B2:C2 Suction Pressure	
AI	151	B2:C2 Discharge Pressure	
AI	152	B2:C2 Liquid Line Pressure	
AI	153	B2:C2 Calculated Saturation Temp	
AI	154	B2:C2 Calculated Discharge Temp	
AI	155	B2:C2 Calculated Liquid Line Temp	
AI	156	B2:C2 Suction Line Temp	
AI	157	B2:C2 Discharge Line Temp	
AI	158	B2:C2 Liquid Line Temp	
AI	159	B2:C2 Superheat Temp	
AI	160	B2:C2 Discharge Superheat Temp	
AI	161	B2:C2 Sub-cooling Temp	
AI	162	B2:C2 Compressor A1 Percentage	
AI	163	B2:C2 Compressor A2 Percentage	
AI	164	B2:C2 Condenser Percentage	
AI	165	B2:C2 Electronic Expansion Valve Position	
AI	166	B2:C2 Compressor 1 Current	
AI	167	B2:C2 Compressor 2 Current	
AI	190	B1:C3 Suction Pressure	
AI	191	B1:C3 Discharge Pressure	
AI	192	B1:C3 Liquid Line Pressure	
AI	193	B1:C3 Calculated Saturation Temp	
AI	194	B1:C3 Calculated Discharge Temp	
AI	195	B1:C3 Calculated Liquid Line Temp	
AI	196	B1:C3 Suction Line Temp	
AI	197	B1:C3 Discharge Line Temp	
AI	198	B1:C3 Liquid Line Temp	
AI	199	B1:C3 Superheat Temp	
AI	200	B1:C3 Discharge Superheat Temp	
AI	201	B1:C3 Sub-cooling Temp	

Table 21:	BACnet Analog Inpu	ts (continued)
-----------	--------------------	----------------

BACnet Analog Inputs				
Point Type	Number	BACnet Point Name		
AI	202	B1:C3 Compressor A1 Percentage		
AI	203	B1:C3 Compressor A2 Percentage		
AI	204	B1:C3 Condenser Percentage		
AI	205	B1:C3 Electronic Expansion Valve Position		
AI	206	B1:C3 Compressor 1 Current		
AI	207	B1:C3 Compressor 2 Current		
AI	220	B2:C3 Suction Pressure		
AI	221	B2:C3 Discharge Pressure		
AI	222	B2:C3 Liquid Line Pressure		
AI	223	B2:C3 Calculated Saturation Temp		
AI	224	B2:C3 Calculated Discharge Temp		
AI	225	B2:C3 Calculated Liquid Line Temp		
AI	226	B2:C3 Suction Line Temp		
AI	227	B2:C3 Discharge Line Temp		
AI	228	B2:C3 Liquid Line Temp		
AI	229	B2:C3 Superheat Temp		
AI	230	B2:C3 Discharge Superheat Temp		
AI	231	B2:C3 Sub-cooling Temp		
AI	232	B2:C3 Compressor A1 Percentage		
AI	233	B2:C3 Compressor A2 Percentage		
AI	234	B2:C3 Condenser Percentage		
AI	235	B2:C3 Electronic Expansion Valve Position		
AI	236	B2:C3 Compressor 1 Current		
AI	237	B2:C3 Compressor 2 Current		

Table 21: BACnet Analog Inputs (continued)

BACnet Analog Values

BACnet Analog Values				
BACnet Point Type	Number	Limit Range	BACnet Point Name	
AV	1	35° - 60°	Leaving Water Maximum Reset Limit	
AV	2	35° - 60°	Leaving Water Minimum Reset Limit	
AV	3	1° - 10°	Maximum Barrel Setpoint Offset	
AV	4	1° - 20°	Compressor Stage Window Above	
AV	5	1° - 20°	Compressor Stage Window Below	
AV	6	25° - 45°	Low Chilled Water Out Cutoff Temp	
AV	7	-30° - 40°	Ambient Air Lockout Temperature	
AV	8	1° - 20°	Superheat Setpoint	
AV	9	150 psi – 475 psi	Head Pressure Setpoint	
AV	10	0 psi – 200 psi	Discharge Pressure Deadband Above	
AV	11	0 psi – 200 psi	Discharge Pressure Deadband Below	
AV	12	0 - 15,000 Ft	Altitude Above Sea Level	
AV	20	38° - 80°	EVAP Sump Heat Enable Setpoint	
AV	21	1° - 10°	EVAP Sump Heat Enable Deadband	
AV	22	0 Amps – 100 Amps	EVAP Maximum Amps	
AV	23	35° - 110°	EVAP Ambient First Stage Enable	
AV	24	-30° - 40°	EVAP Ambient Condenser Lockout	
AV	30	1° - 10°	Waterside Economizer Enable Deadband	
AV	31	0° - 50°	Waterside Economizer Freeze Protection Setpoint	
AV	32	0° - 50°	Waterside Economizer Heat Exchange Inlet Setpoint	
AV	33	0 Sec – 30 Sec	Waterside Economizer Fan Staging Delay	
AV	34	0 Sec – 120 Sec	Waterside Economizer Startup Delay	
AV	35	0% - 50%	Waterside Economizer Minimum VFD Speed	
AV	36	0% - 95%	Waterside Economizer Minimum Mixing Valve w/Fan On	
AV	37	1 Min – 30 Min	Waterside Economizer Primary 3-Way Valve Slow Start	
AV	38	1 Min – 30 Min	Waterside Economizer Primary 3-Way Valve Slow Stop	
AV	39	0% - 100%	Waterside Economizer Primary Valve Maximum Position	
AV	40	0 = Log 1 = Reset	CPM Reset Alarm History { 1 = Reset }	
AV	41	10 psi - 200 psi	CPM Maximum Building Pressure	
AV	42	0 psi - 100 psi	CPM Building Differential Pr. Target	
AV	43	0 psi - 100 psi	CPM Minimum Suction Pressure	
AV	44	0% - 100%	CPM Pump VFD Initial Starting Position	
AV	45	0% - 100%	CPM Pump VFD Minimum Position	
AV	50	30° - 90°	Vestibule 1 Cooling Setpoint	
AV	51	30° - 90°	Vestibule 1 Heating Setpoint	
AV	52	0.1° - 20°	Vestibule 1 Setpoint Deadband	
AV	53	30° - 90°	Vestibule 2 Cooling Setpoint	
AV	54	30° - 90°	Vestibule 2 Heating Setpoint	
AV	55	0.1° - 20°	Vestibule 2 Setpoint Deadband	
L			J	

Table 31: BACnet Analog Values

BACnet Analog Values

BACnet Analog Values					
BACnet Point Type	Number	Limit Range	BACnet Point Name		
AV	60	-100° - 100°	Inlet Water Sensor Calibration Offset		
AV	61	-100° - 100°	Outlet Water Sensor Calibration Offset		
AV	62	-100° - 100°	Outdoor Air Sensor Calibration Offset		
AV	63	-100° - 100°	Barrel 1 Temp Sensor Calibration Offset		
AV	64	-100° - 100°	Barrel 2 Temp Sensor Calibration Offset		
AV	65	-100° - 100°	Vestibule 1 Sensor Calibration Offset		
AV	66	-100° - 100°	Vestibule 2 Sensor Calibration Offset		
AV	70	1 Sec – 60 Sec	Compressor Modulation Rate		
AV	71	5 Sec - 600 Sec	High Outlet Water Temp Failure Time		
AV	80	0 = Run 1 = Reset	Reset Unit Lockout { 1 = Reset }		
AV	81	0 – 2 = Auto/Run/Off	Auto/Run/Off Command		
AV	82	0 = Off 1 = On	Enable/Disable EVAP Drain Valve		
AV	83	0 = Off 1 = On	Enable/Disable Main Relay #4		
AV	84	0 = Off 1 = On	Enable/Disable Main Relay #5		
AV	85	0 = Off 1 = On	Enable/Disable Main Relay #6		
AV	86	0 = Off 1 = On	Enable/Disable Main Relay #7		
AV	87	0 = Off 1 = On	Enable/Disable Main Relay #8		
AV	88	0, 100	Set Analog Output #1 Voltage		
AV	89	0, 100	Set Analog Output #2 Voltage		
AV	90	0, 100	Set Analog Output #3 Voltage		
AV	91	0, 100	Set Analog Output #4 Voltage		

Table 22: BACnet Analog Values (continued)

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	1	Run/Stop Input Command	Status	
BI	2	Proof of Water Flow #1	Status	
BI	3	Proof of Water Flow #2	Status	
BI	4	Emergency Shutdown	Status	
BI	5	Phase Loss	Status	
BI	6	Barrel #1 Disable Command	Status	
BI	7	Barrel #2 Disable Command	Status	
BI	8	Chiller Running On/Off Status	Status	
BI	9	Chiller Fully Loaded Status	Status	
BI	10	Waterside Economizer Fan Run Status	Status	
BI	11	Waterside Economizer at Maximum Capacity	Status	
BI	12	Waterside Economizer Secondary Pump Status	Status	
BI	13	Waterside Economizer Alarm Not Operating	Alarm	
BI	14	Waterside Economizer Alarm Freeze Protection	Alarm	
BI	15	Waterside Economizer Alarm Primary Outlet Sensor	Alarm	
BI	16	Waterside Economizer Alarm HE Waterside Outlet Sensor	Alarm	
BI	17	Waterside Economizer Alarm HE Glycol Inlet Sensor	Alarm	
BI	18	Waterside Economizer Alarm HE Glycol Outlet Sensor	Alarm	
BI	19	Waterside Economizer Alarm VFD Fault	Alarm	
BI	20	Chiller Pumping Module Water Flow Proving	Status	
BI	21	Chiller Pumping Module Primary A Pump 1 Status	Status	
BI	22	Chiller Pumping Module Primary A Pump 2 Status	Status	
BI	23	Chiller Pumping Module Secondary Pump 1 Status	Status	
BI	24	Chiller Pumping Module Secondary Pump 2 Status	Status	
BI	25	Chiller Pumping Module Primary B Pump 1 Status	Status	
BI	26	Chiller Pumping Module Primary B Pump 2 Status	Status	
BI	27	Chiller Pumping Module Alarm Primary Pump A1 Locked Out	Alarm	
BI	28	Chiller Pumping Module Alarm Primary Pump A2 Locked Out	Alarm	
BI	29	Chiller Pumping Module Alarm Secondary Pump 1 Locked Out	Alarm	
BI	30	Chiller Pumping Module Alarm Secondary Pump 2 Locked Out	Alarm	
BI	31	Chiller Pumping Module Alarm Primary Pump B1 Locked Out	Alarm	
BI	32	Chiller Pumping Module Alarm Primary Pump B2 Locked Out	Alarm	
BI	33	Chiller Pumping Module Alarm Maximum Pressure Exceeded	Alarm	
BI	34	Chiller Pumping Module Alarm Pumps Locked Out	Alarm	
BI	35	Chiller Pumping Module Alarm Glycol Feeder Low	Alarm	
BI	40	Evaporator Low Sump Input Status	Status	
BI	41	Evaporator Pump 1 Pressure Status	Status	
BI	42	Evaporator Pump 1 VFD Fault Status	Status	
BI	43	Evaporator Pump 2 Pressure Status	Status	
BI	44	Evaporator Pump 2 VFD Fault Status	Status	
BI	45	Evaporator Condenser Pump 1	Status	

Table 32: BACnet Binary Inputs

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	46	Evaporator Condenser Pump 2	Status	
BI	47	Evaporator Sump Heater	Status	
BI	48	Evaporator Drain Valve	Status	
BI	49	Evaporator Alarm Low Sump Level	Alarm	
BI	50	Evaporator Alarm No Pump 1 Pressure Signal	Alarm	
BI	51	Evaporator Alarm No Pump 2 Pressure Signal	Alarm	
BI	52	Evaporator Alarm Pump 1 VFD Fault	Alarm	
BI	53	Evaporator Alarm Pump 2 VFD Fault	Alarm	
BI	54	Evaporator Alarm Missing Sump Temperature Sensor #1	Alarm	
BI	55	Evaporator Alarm Missing Sump Temperature Sensor #2	Alarm	
BI	56	Evaporator Alarm Missing Sump Temperature Sensor #3	Alarm	
BI	57	Evaporator Alarm Condenser 1 Lockout	Alarm	
BI	58	Evaporator Alarm Condenser 2 Lockout	Alarm	
BI	59	Evaporator Alarm Low Sump Temperature	Alarm	
BI	60	Evaporator Alarm Pump 1 Low Current	Alarm	
BI	61	Evaporator Alarm Pump 1 High Current	Alarm	
BI	62	Evaporator Alarm Pump 2 Low Current	Alarm	
BI	63	Evaporator Alarm Pump 2 High Current	Alarm	
BI	70	B1:C1 Module Enabled	Status	
BI	71	B1:C1 Compressor #1 Status	Status	
BI	72	B1:C1 Compressor #2 Status	Status	
BI	73	B2:C1 Module Enabled	Status	
BI	74	B2:C1 Compressor #1 Status	Status	
BI	75	B2:C1 Compressor #2 Status	Status	
BI	76	B1:C2 Module Enabled	Status	
BI	77	B1:C2 Compressor #1 Status	Status	
BI	78	B1:C2 Compressor #2 Status	Status	
BI	79	B2:C2 Module Enabled	Status	
BI	80	B2:C2 Compressor #1 Status	Status	
BI	81	B2:C2 Compressor #2 Status	Status	
BI	82	B1:C3 Module Enabled	Status	
BI	83	B1:C3 Compressor #1 Status	Status	
BI	84	B1:C3 Compressor #2 Status	Status	
BI	85	B2:C3 Module Enabled	Status	
BI	86	B2:C3 Compressor #1 Status	Status	
BI	87	B2:C3 Compressor #2 Status	Status	
BI	90	B1:C1 Fault Low Suction	Fault	
BI	91	B1:C1 Fault Unsafe Suction	Fault	
BI	92	B1:C1 Fault Trip High Discharge Pressure	Fault	
BI	93	B1:C1 Fault Compressor 1 Not Running	Fault	
BI	94	B1:C1 Fault Compressor 2 Not Running	Fault	

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	95	B1:C1 Fault No Suction Line Temperature Sensor	Fault	
BI	96	B1:C1 Fault Low Superheat	Fault	
BI	97	B1:C1 Fault High Discharge Temperature	Fault	
BI	98	B1:C1 Fault High Discharge psi Trip	Fault	
BI	99	B1:C1 Fault Compressor 1 False Active	Fault	
BI	100	B1:C1 Fault Compressor 2 False Active	Fault	
BI	101	B1:C1 Fault No Suction Pressure Sensor	Fault	
BI	102	B1:C1 Fault Emergency Shutdown	Fault	
BI	103	B1:C1 Fault Modbus Slave Timeout	Fault	
BI	104	B1:C1 Fault High Superheat	Fault	
BI	105	B1:C1 Fault High Saturation Temperature	Fault	
BI	106	B1:C1 Fault Compressor 1 Over Current	Fault	
BI	107	B1:C1 Fault Compressor 2 Over Current	Fault	
BI	108	B1:C1 Fault Compressor 1 Under Current	Fault	
BI	109	B1:C1 Fault Compressor 2 Under Current	Fault	
BI	110	B1:C1 Warning Low Suction Pressure	Warning	
BI	111	B1:C1 Warning Low Suction Pressure Startup	Warning	
BI	112	B1:C1 Warning High Discharge Pressure	Warning	
BI	113	B1:C1 Warning No Discharge Pressure Sensor	Warning	
BI	114	B1:C1 Warning No Discharge Temperature Sensor	Warning	
BI	115	B1:C1 Warning High Superheat	Warning	
BI	116	B1:C1 Warning Condenser Fault	Warning	
BI	117	B1:C1 Warning No Liquid Line Pressure Sensor	Warning	
BI	118	B1:C1 Warning No Liquid Line Temperature Sensor	Warning	
BI	119	B1:C1 Warning High Discharge Pressure 2	Warning	
BI	120	B1:C1 Lockout Suction Pressure	Lockout	
BI	121	B1:C1 Lockout Low Discharge Pressure	Lockout	
BI	122	B1:C1 Lockout Compressor 1 Over Current	Lockout	
BI	123	B1:C1 Lockout Compressor 2 Over Current	Lockout	
BI	124	B1:C1 Lockout High Discharge Temperature	Lockout	
BI	125	B1:C1 Lockout High Discharge Pressure	Lockout	
BI	126	B1:C1 Lockout Low Superheat	Lockout	
BI	127	B1:C1 Lockout High Superheat	Lockout	
BI	128	B1:C1 Lockout High Saturation Temperature	Lockout	
BI	129	B1:C1 Lockout Compressor 1 Under Current	Lockout	
BI	130	B1:C1 Lockout Compressor 2 Under Current	Lockout	
BI	131	B2:C1 Fault Low Suction	Fault	
BI	132	B2:C1 Fault Unsafe Suction	Fault	
BI	133	B2:C1 Fault Trip High Discharge Pressure	Fault	
BI	134	B2:C1 Fault Compressor 1 Not Running	Fault	
BI	135	B2:C1 Fault Compressor 2 Not Running	Fault	

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	136	B2:C1 Fault No Suction Line Temperature Sensor	Fault	
BI	137	B2:C1 Fault Low Superheat	Fault	
BI	138	B2:C1 Fault High Discharge Temperature	Fault	
BI	139	B2:C1 Fault High Discharge psi Trip	Fault	
BI	140	B2:C1 Fault Compressor 1 False Active	Fault	
BI	141	B2:C1 Fault Compressor 2 False Active	Fault	
BI	142	B2:C1 Fault No Suction Pressure Sensor	Fault	
BI	143	B2:C1 Fault Emergency Shutdown	Fault	
BI	144	B2:C1 Fault Modbus Slave Timeout	Fault	
BI	145	B2:C1 Fault High Superheat	Fault	
BI	146	B2:C1 Fault High Saturation Temperature	Fault	
BI	147	B2:C1 Fault Compressor 1 Over Current	Fault	
BI	148	B2:C1 Fault Compressor 2 Over Current	Fault	
BI	149	B2:C1 Fault Compressor 1 Under Current	Fault	
BI	150	B2:C1 Fault Compressor 2 Under Current	Fault	
BI	151	B2:C1 Warning Low Suction Pressure	Warning	
BI	152	B2:C1 Warning Low Suction Pressure Startup	Warning	
BI	153	B2:C1 Warning High Discharge Pressure	Warning	
BI	154	B2:C1 Warning No Discharge Pressure Sensor	Warning	
BI	155	B2:C1 Warning No Discharge Temperature Sensor	Warning	
BI	156	B2:C1 Warning High Superheat	Warning	
BI	157	B2:C1 Warning Condenser Fault	Warning	
BI	158	B2:C1 Warning No Liquid Line Pressure Sensor	Warning	
BI	159	B2:C1 Warning No Liquid Line Temperature Sensor	Warning	
BI	160	B2:C1 Warning High Discharge Pressure 2	Warning	
BI	161	B2:C1 Lockout Suction Pressure	Lockout	
BI	162	B2:C1 Lockout Low Discharge Pressure	Lockout	
BI	163	B2:C1 Lockout Compressor 1 Over Current	Lockout	
BI	164	B2:C1 Lockout Compressor 2 Over Current	Lockout	
BI	165	B2:C1 Lockout High Discharge Temperature	Lockout	
BI	166	B2:C1 Lockout High Discharge Pressure	Lockout	
BI	167	B2:C1 Lockout Low Superheat	Lockout	
BI	168	B2:C1 Lockout High Superheat	Lockout	
BI	169	B2:C1 Lockout High Saturation Temperature	Lockout	
BI	170	B2:C1 Lockout Compressor 1 Under Current	Lockout	
BI	171	B2:C1 Lockout Compressor 2 Under Current	Lockout	
BI	172	B1:C2 Fault Low Suction	Fault	
BI	173	B1:C2 Fault Unsafe Suction	Fault	
BI	174	B1:C2 Fault Trip High Discharge Pressure	Fault	
BI	175	B1:C2 Fault Compressor 1 Not Running	Fault	

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	176	B1:C2 Fault Compressor 2 Not Running	Fault	
BI	177	B1:C2 Fault No Suction Line Temperature Sensor	Fault	
BI	178	B1:C2 Fault Low Superheat	Fault	
BI	179	B1:C2 Fault High Discharge Temperature	Fault	
BI	180	B1:C2 Fault High Discharge psi Trip	Fault	
BI	181	B1:C2 Fault Compressor 1 False Active	Fault	
BI	182	B1:C2 Fault Compressor 2 False Active	Fault	
BI	183	B1:C2 Fault No Suction Pressure Sensor	Fault	
BI	184	B1:C2 Fault Emergency Shutdown	Fault	
BI	185	B1:C2 Fault Modbus Slave Timeout	Fault	
BI	186	B1:C2 Fault High Superheat	Fault	
BI	187	B1:C2 Fault High Saturation Temperature	Fault	
BI	188	B1:C2 Fault Compressor 1 Over Current	Fault	
BI	189	B1:C2 Fault Compressor 2 Over Current	Fault	
BI	190	B1:C2 Fault Compressor 1 Under Current	Fault	
BI	191	B1:C2 Fault Compressor 2 Under Current	Fault	
BI	192	B1:C2 Warning Low Suction Pressure	Warning	
BI	193	B1:C2 Warning Low Suction Pressure Startup	Warning	
BI	194	B1:C2 Warning High Discharge Pressure	Warning	
BI	195	B1:C2 Warning No Discharge Pressure Sensor	Warning	
BI	196	B1:C2 Warning No Discharge Temperature Sensor	Warning	
BI	197	B1:C2 Warning High Superheat	Warning	
BI	198	B1:C2 Warning Condenser Fault	Warning	
BI	199	B1:C2 Warning No Liquid Line Pressure Sensor	Warning	
BI	200	B1:C2 Warning No Liquid Line Temperature Sensor	Warning	
BI	201	B1:C2 Warning High Discharge Pressure 2	Warning	
BI	202	B1:C2 Lockout Suction Pressure	Lockout	
BI	203	B1:C2 Lockout Low Discharge Pressure	Lockout	
BI	204	B1:C2 Lockout Compressor 1 Over Current	Lockout	
BI	205	B1:C2 Lockout Compressor 2 Over Current	Lockout	
BI	206	B1:C2 Lockout High Discharge Temperature	Lockout	
BI	207	B1:C2 Lockout High Discharge Pressure	Lockout	
BI	208	B1:C2 Lockout Low Superheat	Lockout	
BI	209	B1:C2 Lockout High Superheat	Lockout	
BI	210	B1:C2 Lockout High Saturation Temperature	Lockout	
BI	211	B1:C2 Lockout Compressor 1 Under Current	Lockout	
BI	212	B2:C3 Lockout Compressor 2 Under Current	Lockout	
BI	213	B2:C2 Fault Low Suction	Fault	
BI	214	B2:C2 Fault Unsafe Suction	Fault	
BI	215	B2:C2 Fault Trip High Discharge Pressure	Fault	

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	216	B2:C2 Fault Compressor 1 Not Running	Fault	
BI	217	B2:C2 Fault Compressor 2 Not Running	Fault	
BI	218	B2:C2 Fault No Suction Line Temperature Sensor	Fault	
BI	219	B2:C2 Fault Low Superheat	Fault	
BI	220	B2:C2 Fault High Discharge Temperature	Fault	
BI	221	B2:C2 Fault High Discharge psi Trip	Fault	
BI	222	B2:C2 Fault Compressor 1 False Active	Fault	
BI	223	B2:C2 Fault Compressor 2 False Active	Fault	
BI	224	B2:C2 Fault No Suction Pressure Sensor	Fault	
BI	225	B2:C2 Fault Emergency Shutdown	Fault	
BI	226	B2:C2 Fault Modbus Slave Timeout	Fault	
BI	227	B2:C2 Fault High Superheat	Fault	
BI	228	B2:C2 Fault High Saturation Temperature	Fault	
BI	229	B2:C2 Fault Compressor 1 Over Current	Fault	
BI	230	B2:C2 Fault Compressor 2 Over Current	Fault	
BI	231	B2:C2 Fault Compressor 1 Under Current	Fault	
BI	232	B2:C2 Fault Compressor 2 Under Current	Fault	
BI	233	B2:C2 Warning Low Suction Pressure	Warning	
BI	234	B2:C2 Warning Low Suction Pressure Startup	Warning	
BI	235	B2:C2 Warning High Discharge Pressure	Warning	
BI	236	B2:C2 Warning No Discharge Pressure Sensor	Warning	
BI	237	B2:C2 Warning No Discharge Temperature Sensor	Warning	
BI	238	B2:C2 Warning High Superheat	Warning	
BI	239	B2:C2 Warning Condenser Fault	Warning	
BI	240	B2:C2 Warning No Liquid Line Pressure Sensor	Warning	
BI	241	B2:C2 Warning No Liquid Line Temperature Sensor	Warning	
BI	242	B2:C2 Warning High Discharge Pressure 2	Warning	
BI	243	B2:C2 Lockout Suction Pressure	Lockout	
BI	244	B2:C2 Lockout Low Discharge Pressure	Lockout	
BI	245	B2:C2 Lockout Compressor 1 Over Current	Lockout	
BI	246	B2:C2 Lockout Compressor 2 Over Current	Lockout	
BI	247	B2:C2 Lockout High Discharge Temperature	Lockout	
BI	248	B2:C2 Lockout High Discharge Pressure	Lockout	
BI	249	B2:C2 Lockout Low Superheat	Lockout	
BI	250	B2:C2 Lockout High Superheat	Lockout	
BI	251	B2:C2 Lockout High Saturation Temperature	Lockout	
BI	252	B2:C2 Lockout Compressor 1 Under Current	Lockout	
BI	253	B2:C3 Lockout Compressor 2 Under Current	Lockout	
BI	254	B1:C3 Fault Low Suction	Fault	
BI	255	B1:C3 Fault Unsafe Suction	Fault	

BACnet Number BACnet Description	
Point Type	е Туре
BI 256 B1:C3 Fault Trip High Discharge Pressure Fa	ault
BI 257 B1:C3 Fault Compressor 1 Not Running Fa	ault
BI 258 B1:C3 Fault Compressor 2 Not Running Fa	ault
BI 259 B1:C3 Fault No Suction Line Temperature Sensor Fa	ault
BI 260 B1:C3 Fault Low Superheat Fa	ault
BI 261 B1:C3 Fault High Discharge Temperature Fa	ault
BI 262 B1:C3 Fault High Discharge psi Trip Fa	ault
BI 263 B1:C3 Fault Compressor 1 False Active Fa	ault
BI 264 B1:C3 Fault Compressor 2 False Active Fa	ault
BI 265 B1:C3 Fault No Suction Pressure Sensor Fa	ault
BI 266 B1:C3 Fault Emergency Shutdown Fa	ault
BI 267 B1:C3 Fault Modbus Slave Timeout Fa	ault
BI 268 B1:C3 Fault High Superheat Fa	ault
BI 269 B1:C3 Fault High Saturation Temperature Fa	ault
BI 270 B1:C3 Fault Compressor 1 Over Current Fa	ault
BI 271 B1:C3 Fault Compressor 2 Over Current Fa	ault
BI 272 B1:C3 Fault Compressor 1 Under Current Fa	ault
BI 273 B1:C3 Fault Compressor 2 Under Current Fa	ault
BI 274 B1:C3 Warning Low Suction Pressure Wa	rning
BI 275 B1:C3 Warning Low Suction Pressure Startup Wa	rning
BI 276 B1:C3 Warning High Discharge Pressure Wa	rning
BI 277 B1:C3 Warning No Discharge Pressure Sensor Wa	rning
BI 278 B1:C3 Warning No Discharge Temperature Sensor Wa	rning
BI 279 B1:C3 Warning High Superheat Wa	rning
BI 280 B1:C3 Warning Condenser Fault Wa	rning
BI 281 B1:C3 Warning No Liquid Line Pressure Sensor Wa	rning
BI 282 B1:C3 Warning No Liquid Line Temperature Sensor Wa	rning
BI 283 B1:C3 Warning High Discharge Pressure 2 Wa	rning
BI 284 B1:C3 Lockout Suction Pressure Loc	kout
BI 285 B1:C3 Lockout Low Discharge Pressure Loc	kout
BI 286 B1:C3 Lockout Compressor 1 Over Current Loc	kout
BI 287 B1:C3 Lockout Compressor 2 Over Current Loc	kout
BI 288 B1:C3 Lockout High Discharge Temperature Loc	kout
BI 289 B1:C3 Lockout High Discharge Pressure Loc	kout
BI 290 B1:C3 Lockout Low Superheat Loc	kout
BI 291 B1:C3 Lockout High Superheat Loc	kout
BI 292 B1:C3 Lockout High Saturation Temperature Loc	kout
BI 293 B1:C3 Lockout Compressor 1 Under Current Loc	kout
BI 294 B1:C3 Lockout Compressor 2 Under Current Loc	kout
BI 295 B2:C3 Fault Low Suction Fa	ault

BACnet Binary Inputs				
BACnet Point Type	Number	BACnet Description	Value Type	
BI	296	B2:C3 Fault Unsafe Suction	Fault	
BI	297	B2:C3 Fault Trip High Discharge Pressure	Fault	
BI	298	B2:C3 Fault Compressor 1 Not Running	Fault	
BI	299	B2:C3 Fault Compressor 2 Not Running	Fault	
BI	300	B2:C3 Fault No Suction Line Temperature Sensor	Fault	
BI	301	B2:C3 Fault Low Superheat	Fault	
BI	302	B2:C3 Fault High Discharge Temperature	Fault	
BI	303	B2:C3 Fault High Discharge psi Trip	Fault	
BI	304	B2:C3 Fault Compressor 1 False Active	Fault	
BI	305	B2:C3 Fault Compressor 2 False Active	Fault	
BI	306	B2:C3 Fault No Suction Pressure Sensor	Fault	
BI	307	B2:C3 Fault Emergency Shutdown	Fault	
BI	308	B2:C3 Fault Modbus Slave Timeout	Fault	
BI	309	B2:C3 Fault High Superheat	Fault	
BI	310	B2:C3 Fault High Saturation Temperature	Fault	
BI	311	B2:C3 Fault Compressor 1 Over Current	Fault	
BI	312	B2:C3 Fault Compressor 2 Over Current	Fault	
BI	313	B2:C3 Fault Compressor 1 Under Current	Fault	
BI	314	B2:C3 Fault Compressor 2 Under Current	Fault	
BI	315	B2:C3 Warning Low Suction Pressure	Warning	
BI	316	B2:C3 Warning Low Suction Pressure Startup	Warning	
BI	317	B2:C3 Warning High Discharge Pressure	Warning	
BI	318	B2:C3 Warning No Discharge Pressure Sensor	Warning	
BI	319	B2:C3 Warning No Discharge Temperature Sensor	Warning	
BI	320	B2:C3 Warning High Superheat	Warning	
BI	321	B2:C3 Warning Condenser Fault	Warning	
BI	322	B2:C3 Warning No Liquid Line Pressure Sensor	Warning	
BI	323	B2:C3 Warning No Liquid Line Temperature Sensor	Warning	
BI	324	B2:C3 Warning High Discharge Pressure 2	Warning	
BI	325	B2:C3 Lockout Suction Pressure	Lockout	
BI	326	B2:C3 Lockout Low Discharge Pressure	Lockout	
BI	327	B2:C3 Lockout Compressor 1 Over Current	Lockout	
BI	328	B2:C3 Lockout Compressor 2 Over Current	Lockout	
BI	329	B2:C3 Lockout High Discharge Temperature	Lockout	
BI	330	B2:C3 Lockout High Discharge Pressure	Lockout	
BI	331	B2:C3 Lockout Low Superheat	Lockout	
BI	332	B2:C3 Lockout High Superheat	Lockout	
BI	333	B2:C3 Lockout High Saturation Temperature	Lockout	
BI	334	B2:C3 Lockout Compressor 1 Under Current	Lockout	
BI	335	B2:C3 Lockout Compressor 2 Under Current	Lockout	

BACnet Multi-State Input

	BACnet Multi-State Input				
BACnet Point #	BACnet Point Name	BACnet Description	Limits		
MI: 1	Operating Status	Current Unit Mode	1 = OFF_MODE 2 = RUN MODE 3 = Holiday OFF MODE 4 = Holiday RUN MODE 5 = Startup Delay 6 = Emergency Shutdown 7 = High Leaving Water		

Table 33: BACnet Parameter Multi-State Input

Overview

Features

The main operator interface to the Main DX Barrel Chiller Controller is a panel PC with a 15 in. touchscreen. It provides a direct, graphic-enhanced, menu-driven link to allow the administrative level end user to view status points, change setpoints and configurations, and view alarms and reset alarm lockouts on the DX Barrel Chiller system.

Directly below the touchscreen is a rocker switch panel with switches to shut down the unit and/or each compressor.

The touchscreen provides the following useful functions:

- Utilizes a graphical touchscreen menu system with easy-to-understand menu options
- Easy setup and operation without the need for specialized training
- Provides protection from unauthorized users through passcode authorization
- Comes equipped with real-time clock backup power supply for short power losses
- Contains a USB port for software updates

AADN		DX Barrel Chiller		EN	ABLED		
		DX BARREL CHILLER	NO LOCKOUTS				
		Version: 9.29					
Entoring	Wator	Leaving Water					
67.2	° F	55 2° E		Barrel #1 Leaving			
07.12			54.5° F				
Outdoor Air Te	emperature			Barrel	#2 Leavir	ıg	
62.9	• •	Leaving Water Setpoint	56 1° E				
02.0	F	42.0° F					
		Setpoint Reset Signal	Barrel Water Setpoint		oint		
		0.0 VDC		37.0° F			
WSE St	atus						
Fan Speed	0.0° F	Water Flow Rate	Barrel	Circuit	Compres	sor Status	
Fan Status	OFF	0 GPM	1	1	1	2	
WSE @ Max Status	NOT MAXED	Water Proof of Flow	1	2	1	2	
		#1 Flow Detected	1	3	1	2	
Vestibu	Ie #1	#2 Flow Detected	2	1	1	2	
Vestibu	le #2	Glycol Percentage - Freezing Point	2	2	1	2	
Temperature	52.1° F	0% Glycol	2	3	1	2	
						Page 1 of 1	

Start and Logging In Screens

Start Screen

Once the Chiller Touchscreen program has been successfully installed, the program will run continuously on the panel PC. The Start Screen is the first screen displayed on startup. See **Figure 19, this page**.

Figure 19: Start Screen

The Start Screen displays the current time, day of the week, month, day, and year. The **<Help>** button (lower left) and the **<Login/Log Out>** button (lower right) are displayed on this screen and every screen in the program. The **<Help>** button opens the Help Screen which contains the Controls Technical Support phone number and other information. See Figure 20, this page. Select **<Exit Help>** to exit the screen.

Figure 20: Help Screen

System Overview Screen (View Only)

Tap the Start Screen to access the System Overview Screen (view only). The View Only status screen only shows alarms and component status.

Logging In - Administrator Access

At the bottom of the System Overview Screen, touch the **<Login>** button to access the Login Screen. See **Figure 22**, **this page**. Touch the User Name field and use the pop-up keyboard to enter a username and touch **<Submit>**. Touch the passcode field and use the pop-up keyboard to enter a passcode and touch **<Submit>**. Then, at the Login Screen, touch **<Submit>** again.

WARNING: The touchscreen program does not time-out. Remember to logout when finished to secure the system.

Figure 22: Login Screen

Changing the Passcode

System Overview Screen (Full Access)

The Administrator account has full access to the *System Overview Screen*. See **Figure 23, this page**.

The System Overview Screen displays the current operating status, inputs, and outputs. Schedules, view alarms and reset lockouts, and access and change setpoints and configurations can also be accessed from this screen using the icons located on the vertical toolbar at the right of the screen: **<Alarms>**, **<Details>**, **<Schedules>**, **<Setpoints>**, and **<Configuration>**.

The bottom of the screen holds additional functions: **<Help>**, **<System Settings>**, **<User Settings>**, **<Admin Access>**, and **<Logout>**.

Figure 23: System Overview Screen (Full Access)

Changing the Administrator Passcode

At the bottom of the *System Overview Screen*, touch **<User Settings>**. The *Manage Users Screen* will appear. See **Figure 25**, **this page**. Touch the Administrator username and passcode entry on the screen to highlight it and then touch **<Change Passcode>**.

WARNING: Change the Administrator passcode as soon as possible to secure the system and record the password before touching
 Change Passcode>. Logout of the touchscreen when tasks are completed in order to secure the system.

The *New Passcode Screen* will appear. See **Figure 24**, **this page**. Enter the new passcode in the passcode field and then again in the Confirm field or choose **<Generate Random Passcode>**. Please pay attention to the passcode requirements listed on the screen.

Figure 24: New Passcode Screen

If the passcodes don't match or don't meet the requirements, a message will appear explaining what is wrong with the passcode—for example, the passcodes do not match or the passcode requires one lower case letter.

If the passcode change is successful, the *Manage Users Screen* is displayed and the last date changed will update the date and time you changed the passcode. See **Figure 25**, **this page**.

Touch **<Exit User Settings>** at the bottom of the display to return to the *System Overview Screen*.

Thu - May 14, 2020 8:39:45	AM	User S	ettings			
	Manage Users					
	User Name	User Tiers	Status	La	st Login	Last Passcode Change
						May 13, 2020, 2:14:04 PM
					Chang	e Passcode
Help		System Settings	Exit User Settings	A	dmin Access	Log Out

Figure 25: Manage Users Screen

Button and Icon Function

Icons and Button Functions

Navigation

There are several ways to navigate the touchscreen program. One is to use a finger to swipe up and down or left and right to move from screen to screen. Another is to touch the named buttons on the screen. See **Table 34, this page**, for a list of Navigation buttons and their functions.

Button	Function
No Button	Use a finger to swipe the screen up or down or left to right to move from screen to screen.
Back	Touch the <back></back> button to exit the screen without saving changes and returns to the previous screen.
>	The > symbol located on the left-hand side toolbar of a screen means a swipe right returns to the previous screen until the main screen is reached.

Table 34: Navigation Buttons

Configuration Buttons

See **Table 35, this page**, for a list of configuration buttons and their functions.

Button	Function
Submit	The <submit></submit> button is used throughout the program to save a setting or value. This includes <submit changes=""></submit> and <submit search=""></submit> . The program verifies the input and returns to the previous screen.
Save	Touch the <save></save> button to save changes and return to the previous screen.
	Touch the <toggle></toggle> button to turn it on and off. Green is On/Yes and red is Off/No.
•	Touch the <radio></radio> button to turn it on and off. Green is On/Yes and gray is Off/No. The radio button is grouped with other radio buttons so that only one radio button can be chosen On/Yes in the group.

Table 35: Configuration Buttons

Administrative Access Icons

System settings and screens are easily accessible by simply touching one of the five icons found on the right side of the *System Overview Screen*. The subscreens contain data entry boxes with accessible number keyboards for data entry and screen maneuvering buttons such as **<Back>**, **<Submit>**, and **<Done>**.

There are five main administrative access icons. See **Table 36**, **this page**, for a list of these icons and their functions.

lcon	Function
	When bright yellow, the <alarms></alarms> icon opens the Alarms Screen and displays active alarms. When greyed out, no active alarms are present.
Ш	The <details></details> icon opens the Details Screens for Chiller Pump Status, Waterside Economizer Status, Evap Status, Vestibule(s) Status, and RSM Module(s) Status. There are four pages of details.
	The <schedules></schedules> icon opens the Schedules Screen & Holidays Screen. These screens are for setting the schedule for the controller, schedule overrides, and holidays.
4	The <setpoints></setpoints> icon opens the Setpoint Screens for Temperatures, Staging Delays & Timing Intervals, Vestibules, and Sensor Calibration.
٥	The <configuration></configuration> icon opens the System Configuration Screens for the Main DX Barrel Chiller Controller, RSM Modules, Waterside Economizer Settings, Building Pump Settings, and Evaporator Condenser Module.

Table 36: Administrative Icons

System Settings

System Settings

At the bottom of the *System Overview Screen*, touch **<System Settings>**. The System Settings Screen will appear. See Figure 26, this page.

WARNING: <Exit Program> is to be used only for extreme circumstances to completely close the program such as when the program needs to be restarted.

System Settings Buttons and Functions

Refer to **Table 37, this page**, for a description of the System Settings buttons and functions.

Figure 26: System Settings Screen

BUTTON	SYSTEM SETTINGS
Comm Settings	The <comm settings=""></comm> function is for setting up communication to the Main DX Barrel Chiller Controller. This communication can be through a serial connection on the local loop or through an ethernet connection using a CommLink 5. Verify communication has been established by performing a search for units.
Search for Units	Once communication has been established, the Search for Units> function is used to search for unit controllers on the loop or loops.
Manage Units	The <manage units=""></manage> function is used to change names and/or descriptions of loops and units if desired.
Polling Units	The <polling units=""></polling> function shows the unit controllers in queue and the parameter blocks. It also allows Administrators to disable polling.
Program Controller	The <program controller=""></program> function allows software updates in a unit controller using the USB port on the touchscreen.
Program Module	The <program module=""></program> function allows software updates in a module using the USB port on the touchscreen.
Exit Program	The <exit program=""></exit> function will completely close the software application from the touchscreen. This should only be performed when told to do so by a Controls Support Technician.

Table 37: System Settings Functions and Buttons

Details Screens

Details Screens

To the right of the administrator access level *System Overview Screen*, touch the **<Details>** icon. The first *Details Screen* will appear. There are four details screens, specified by a page number at the bottom of each screen. Slide the screen up and down to access each page. Touch the **>** symbol on the left to return to the *System Overview Screen*.

Mon -	May 4, 2020 8:41:28 AM					
		De	etails			
	Chiller Pump	Status		WSE Status		
	OFF			DISABLED / O	FF	
	OFF		Primary 3-Way Valve			0.0%
	OFF		Secondary 3-Way Valve			0.0%
	OFF		HE Waterside Outlet			0.0° F
	OFF		HE Glycol Side Inlet			0.0° F
	OFF		Primary Outlet Temp			0.0° F
	Pump Suction Pressure	0.0 PSI	HE Glycol Side Outlet			0.0° F
	Pump Discharge Pressure	0.0 PSI	Fan Speed			0.0%
	Pump Differential Pressure	0.0 PSI	VFD Fault		NO	FAULT
	Pump VFD Signal	0.0%	Fan Status			OFF
	Pump Water Flow	OFF	Secondary Pump			OFF
	Bypass Valve Position	0.0%	WSE @ Max Status			OFF
			Active Module Alarms		NO	ALARM
Γ.		Swipe Up	to See More			Page 1 of 4
	Help	System Settings	User Settings	Admin	Access	Log Out

Figure 27: Chiller Pump Status and Waterside Economizer Status Details screen

Figure 28: Evaporator Condenser Status and Vestibule Status Details Screen

May 4, 2020 8:42:37 AM						
		RS	5M Modules			
REFRIGERANT	B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3
Suction Pressure						
Calc Saturation Temp						
Suction Line Temp						
Superheat						
Discharge Pressure				380.4 PSI		
Compressor 1						
Compressor 2						
Enable Input Switch	ENABLED	ENABLED	ENABLED	ENABLED	DISABLED	DISABLED
Compressor Running						
Condenser Fan						
Expansion Valve				100%		
Module Fault	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Module Warning	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Module Lockout	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
						Page
Help	2	ystem Settings	User S	iettings	Admin Access	Log Out

Figure 29: RSM Status Details Screen

					RSM	Modules						
REFRIGERANT		B1:C1		B2:C1		B1:C2		B2:C2	В	1:C3	B	2:C3
Discharge Line T	emp							40.6° F	0			0° F
Calc Discharge T	emp											0° F
Discharge Super	heat	-1.5°										
Liquid Line Press	ure							69.8 PSI				
Liquid Line Temp								40.6° F				0° F
Calc Liquid Line	Temp											
SubCooling												0" F
Compressor 1 Cu	urrent	0.0 Am	ps	0.0 Amps		0.0 Amps		0 Amps	0.0	Amps		Amps
Compressor 2 Cu	urrent	0.0 Am	ps	0.0 Amps		0.0 Amps		0 Amps	0.0	Amps		Amps
				Cor	npressor	r Staging S	tatus					
	B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3	B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3
Stage Up Bits												
Stage Down Bits												
Compressor	c1	c1	c1	c1	c1	c1	c2	c2	c2	c2	c2	c2
Installed Bits												
												Page

Figure 30: RSM Status and Compressor Staging Status Details Screen

Schedules and Overrides

Setting Schedules

To the right of the administrator access level *System Overview Screen*, touch the **<Schedules>** icon. The *Scheduling Screen* will appear. See **Figure 31**, **this page**.

Figure 31: Scheduling Screen

The controller has two event start and stop times per day and two event start and stop times for holidays. The holiday start and stop times will override the standard operating hours.

Set schedules by individual days or by touching **<Apply Mon - Fri Schedule>** or **<Apply Full Week Schedule>**. Touching any of the fields or these selections displays the *Time Selection Screen*. See **Figure 32**, **this page**. Touch the **<Set Time>** button in the middle of the screen.

Figure 32: Time Selection Screen

Touching **<Full Day Occupied>** or **<Full Day Unoccupied>** which will automatically set the times. Toggle each event on in order to set the time.

It is also possible to copy a schedule from a previous day and/or copy a schedule to the next day. When finished, touch **<Accept>**.

Figure 33: Set Time Screen - Individual Day

Scheduling Overrides

From the *Scheduling Screen*, it is possible to override the schedule mode of operations. See **Figure 31**, this page.

This screen has the Auto Scheduling, Force Schedule ON or Force Schedule OFF options.

A scheduled force override will remain in effect until canceled. To cancel an override, select the Auto Scheduling option.

Setting, Saving and Restoring Holidays and Schedules

Setting Holidays

While at the *Scheduling Screen*, see Figure 31, page 100, swipe up to access the *Holidays Screen*. See Figure 34, this page.

Figure 34: Holidays Screen

This screen allows selection of 14 holiday periods. It is possible to schedule the holiday time schedule by touching **<Full Day Occupied>** or **<Full Day Unoccupied>** which will display the *Holiday Set Time Screen*. See **Figure 35, this page**.

Figure 35: Holiday Set Time Screen

In the *Holidays Screen*, touch a date in the month to highlight it green and tag it as a holiday. Days selected as holidays are indicated with a green background and white text.

There are 14 holiday periods available for each year. These holiday periods can span a single day to months.

Holiday periods override the standard operating hours to accommodate holidays or other special events.

It is not possible to program holidays for the next year, and holidays do not automatically adjust for the new year. It is necessary to access this screen after the new year and accommodate holidays that float, such as Memorial Day.

Saving and Restoring Schedules and Holidays

While at the *Scheduling Screen*, touch **<Save>** to save the controller's schedule. Touch **<Load>** to restore a previously saved schedule or to copy or transfer a schedule from another controller. Touch **<Clear>** to completely erase the schedule appearing in the window.

WARNING:	<clear> will clear ALL entered stop/start</clear>
	times, so use with caution.

While at the Holidays Screen, touch **<Save>** to save the Holidays. Touch **<Load>** to restore previously saved Holidays or to copy or transfer Holidays from another controller's schedule. Touch **<Clear All>** to completely erase the holidays appearing in the window.

Saving all schedules and/or holidays from the controller to a computer for use in restoring the schedules and/or holidays for copying to another specific controller will save time in configuring the controller and reentering schedules and/or holidays for another controller.

Saving holidays will also make it easier to enter the holidays for the next calendar year when it arrives.

Setpoints Screens

Setpoint Screens

To the right of the administrator access level *System Overview Screen*, touch the **<Setpoints>** icon. The *Temperatures Setpoints Screen* will appear. See **Figure 36**, **this page**. There is one setpoint screen for each of the following categories: Temperatures, Staging Delays, Vestibules, and Sensor Calibration. See **Figures 36-39**, **this page**. Touch the buttons at the right of the *Temperatures Setpoint Screen* to access the categories. Touch the **>** symbol on the left to return to the *Temperatures Setpoint Screen*.

Mor	i - May 4, 2020 8:49:11	AM							
			Temp	perat	ures				
	Chilling L	eaving Water Setpo	int Reset Limits	Ba	rrel Leaving	Water Setp	ooint Offset Limit		
	42.0 °	E Leaving Water	r Maximum Setpoint			Barrel Leavi	ng Water Maximum Offset Limit		Staging Delays
	42.0 *	E Leaving Water	r Minimum Setpoint			Barrel Setp	oint Max Integration Step		
	Compres	or Staging Window	IS	Te	mperature P	rotection L	imits		
*	2.0 * 1	Compressor S	tage Window Above		35.0 * F	Low Chille	d Water Out Cutoff Limit		Vestibule
	2.0 * 1	Compressor S	tage Window Below		25.0 ° F	Ambient	Air Lockout Temperature		
		Su	perheat Setpoint						
			15.0 ° F	Super	heat Setpoint				
									Calibration
							Pa	ge 1 of 1	
	Help		System Setting	gs	User S	Settings	Admin Access	Lo	ig Out

Figure 36: Temperatures Setpoints Screen

To change a setpoint, touch the blue data field next to the setpoint. The *Keypad Data Entry Screen* will appear. See **Figure 45, page 104**. Each setpoint has its own data entry screen containing the name of the setpoint, a brief description of the setpoint, and the valid range for the setpoint.

Enter a new value that is within the allowable range. Select **<Submit>** to have the system accept the new value. If an entered setpoint is not in the valid range, it will remain as is and will not change. Touch **<Back>** to return to the previous screen without saving the entry.

The *Vestibules Setpoints Screen* also contains configuration setpoints. Use the toggle key next to each configuration setpoint to turn the configuration on or off.

Mon - May 4, 2020 8:51:02	АМ				
		Staging Delay	rs and Timing Interval	s	
		10 Sec	System Startup Delay		
		60 Sec Ba	ad Water Out Temp Failure Delay		
		30 Sec Le	saving Water Setpoint Reset Rate		
		30 Sec	Barrel Out Setpoint Reset Rate		
*		15 Sec	Compressor Modulation Rate		
		1 Min	Compressor Staging Up Delay		
		1 Min C	Compressor Staging Down Delay		
		3 Min 0	Compressor Minimum Run Time		
			Compressor Minimum Off Time		
					Page 1 of 1
Help		System Settings	User Settings	Admin Access	Log Out

Figure 37: Staging Delays and Timing Intervals Setpoints Screen

Mon - May 4, 21	J2U 85132 AM	Ves	tibules		
	Vestibule #1		Vestibule #2		
	75.0 ° F	Cooling Setpoint	72.0 ° F	Cooling Setpoint	
	65.0 ° F	Heating Setpoint	60.0 * F	Heating Setpoint	
		Setpoint Deadband	1.0 ° F	Setpoint Deadband	
		Has Cooling Coil		Has Cooling Coil	
		Has Heating		Has Heating	
		Has Coil Pump WFS	•	las Coil Pump WFS	
		Has Ambient Override	На	s Ambient Override	
					Page 1 of 1
Hel	о О	System Settings	User Settings	Admin Access	Log Out

Figure 38: Vestibules Setpoints Screen

Figure 39: Sensor Calibration Setpoints Screen

Configuration Settings Screens

Configuration Settings Screens

To the right of the administrator access level *System Overview Screen*, touch the **<Configuration>** icon. The *System Configuration Main Screen* will appear. See **Figure 40**, **this page**. Touch the buttons to the right of the *System Configuration Main Screen* to access the categories. Touch the **>** symbol on the left or slide the screen to the left to return to the *System Configuration Main Screen*.

F	i - May 8, 2020 8:06:40.	AM							
			System Cor	nfig	uratic	'n			
	Installed C	ptions		Bina	ry Input C	ptions			RSM Module
		Has Waterside Eco	nomizer	0		Has Phase Brown	iout Input		
		Has Building Loop W	ater Pump			Has Safety Shutdow	n Binary Input		
		Has EVAP Condense	r Module	Time	/ Date C	ntions			WSE Settings
				mine	7 Date 0	puons			
	Quantity o	f Stages / Modules				Daylight Sa	vings Start Day		
	2	Number	of Barrels		0	Daylight Sa	wings End Day		
	2	Barrel #1	Circuits			10.5			Pump Settings
		Barrel #2	Circuits	Ketn	gerant Le	ak Options			
				•		Causes Alarm	Only		
		Number of Ves	tibule Modules	•		Causes Shutdown	& Lockout		
									Evap Module
							Page 1 o	of 1	
	Help		System Setting:		Us	er Settings	Admin Access		Log Out

Figure 40: System Configuration Main Page

Figure 41: Refrigeration Modules Screens

	Building F	Pump Settings		
Pumping Configurations	Pump Backup C	Configuration	Miscellaneous Configu	irations
 Primary Only with Fixed Speed Pumping 	Prima	ary A Backup Pump	Enable Pump Lead	/Lag Operation
Primary Only with Variable Speed Pumping	Secon	ndary Backup Pump		
Primary and Secondary Pumping	Prim.	ary B Backup Pump		
Primary A, Primary B, and Secondary Pumping				
Pumping in Freeze Protection	100 PSI	Maximum Building Pressure	1% Pump VFI	D Initial Starting Position
Pumping in Freeze Protection Disabled	10 PSI	Building Differential Pressure Target	1% Pump V	/FD Minimum Position
Pumping in Freeze Protection Enabled	1 PSI N	Ainimum Suction Pressure		
Building Pump Bypass Valve	300 Sec 8	Pump Proving Time Delay	Main Controller Water	Flow Sensor
Installed			0 GPM Sensor	Scaling Max Reading
				Page 1

Figure 43: Boiler Pump Settings Screen

		Evap Cond	enser Module		
	1	Number of Temp Sensors	2	Number of Pumps	
	0.0 ° F	Sensor 1 Calibration Offset	300 Sec	Pump Maximum Ramp Time	
	0.0 * F	Sensor 2 Calibration Offset	120 Sec	Pump Minimum Ramp Time	
	0.0 ° F	Sensor 3 Calibration Offset	75 * F	Pump Ramp Enable Temp	
*	50.0 ° F	Sump Heat Enable Setpoint	0 Sec	Pump Pre-Ramp Hold Time	
	1.0 ° F	Heat Enable Deadband	55.0 * F	Ambient First Stage Enable	
	0 Amps	Maximum Amps	20.0 * F	Ambient Condenser Lockout	
					Page 1 c
Help		System Settings	User Settings	Admin Access	Log Out

Changing Configuration and Setpoint Values

Changing Configuration and Setpoint Values

To change a value for a configuration or setpoint, touch the blue data field next to the setpoint. The *Keypad Data Entry Screen* will appear. See **Figure 45**, **this page**. Each editable configuration or setpoint has its own data entry screen containing the name of the configuration or setpoint, a brief description of the configuration or setpoint.

Enter a new value that is within the allowable range in the blue data entry field above the keypad.

Touch **<Submit>** to have the system accept the new value. If an entered setpoint is not in the valid range, it will remain as is and will not change. Touch **<Back>** to return to the previous screen without saving the entry.

The *Configuration Settings Screens* also utilize radio buttons and toggle keys. Use the radio button next to a configuration to turn the configuration on or off—grey is off; green is on.

Use the toggle key next to each configuration setpoint to turn the configuration on or off—red is off; green is on.

Figure 45: Keypad Data Entry Screen

Viewing Alarm Status

To access the *Alarms Log*, from the *System Overview Screen*, touch the **<Alarms>** icon. This icon will be a dull grey when no active alarms exist and will be a bright yellow when active alarms exist.

There are two views for the Alarms Log: View Only and Administrative Access.

The View Only shows the alarm category, alarm description, and number of active alarms at the bottom center of the screen.

The Administrative Access shows the alarm category, alarm description, number of active alarms at the bottom center of the screen and has buttons at the bottom to allow the administrator to reset lockouts. Touch one of the **<Reset Lockout>** buttons at the bottom of the screen to immediately reset an alarm once it has cleared. See **Figure 46, this page**.

Main DX Barrel Chiller Controller Technical Guide

Troubleshooting

Touch Screen Troubleshooting

Updating the Touch Screen

- 1. Download the latest software obtained from an AAON representative. The software file is named ChillerJFXx.x.x.zip, where x.x.x stands for the version number.
- 2. Extract the contents of the compressed file to the chiller folder located on the panel PC's hard drive.
- 3. Confirm to replace the old versions of ChillerJFX.jar and Version.txt with the new files.

Communication Lost - No Comm

- Verify that the main controller is powered on and is firmly connected to the touchscreen with the communications cable.
- Verify that the CommLink 5 is powered on and connected to your touchscreen with the ethernet cable.

Sync Clock

In the event of the main controller being powered down for a week or longer, it will lose its time and date. Once power is cycled to the main controller, the touchscreen will display the correct time and date.

Unit Run/Stop and Compressor Disable

There can be up to seven switches located below the touchscreen that can be used to disable the compressors or force the unit to run. See **Figure 47, this page**.

The switches labeled Circuit A, B, C, D, E, and F allow for a direct disabling of each Compressor—1, 2, 3, 4, 5, and 6. These switches might be used to troubleshoot a problem with a given compressor and it needs to be disabled.

The Unit Run/Stop Switch is a local run switch used to force the unit to run even though the Main DX Barrel Chiller Controller is not commanding the unit to run. This might be used in a local test situation where an operator needs to force the chiller into operation for diagnostic reasons.

Figure 47: Chiller Rocker Switch Panel (Three Circuit Switches Shown)

General

Prism 2 is a complete Windows[®]-based graphical interface controls and management program that allows interaction with digital controls. The program provides standard, easy-to-understand status, setpoint, and configuration screens for the main DX Barrel Chiller Controller and other controllers in the system.

Prism 2 allows access to trend logs and alarm conditions. The program can be configured for direct on-site installation or TCP/ IP Internet connection.

NOTE: This appendix gives a brief overview of the Prism 2 software. For more information, refer to the *Prism 2 Technical Guide*, the *CommLink 5 Technical Guide*, the *IP Module Technical Guide*, the *USB-Link 2 Technical Guide*, and/or the *MiniLink PD 5 Technical Guide*. All can be found on the AAON website at www.aaon.com/controlsmanuals.

Feature Summary

Prism 2 provides a broad set of features:

- Easy to use
- On-site or TCP/IP communications
- User programmable description for every piece of equipment and user-defined custom screens
- Automatic retrieval of trend logs and export capability to spreadsheet and database programs
- Alarm Logs maintained on disk
- Alarm E-mail/texting capability when using a CommLink
- Encrypted History Logs

System Requirements

Prism 2 requires a computer that meets or exceeds the following requirements:

Operating System

Microsoft Windows® 10

NOTE: Prism 2 is not intended for a server/client environment nor for any version of Windows Server.

Minimum Hardware

- CommLink 5 or USB Link 2 for direct, on-site connection
- IP Module for remote connection
- Prism is NOT supported in a server environment. It does not support client/server systems. Prism is a LAPTOP/ DESKTOP ONLY system.
- WARNING: Older operating systems, while they still might be capable of running Prism 2, are not recommended due to security updates being obsoleted by Microsoft[®]. AAON does not support troubleshooting of any version of Windows[®] operating the Prism program. Some new models of laptops running the latest release of Windows[®] 10 have also experienced issues running Prism, and AAON cannot troubleshoot customer computer issues.

Software License

Prism 2 does not require any license agreement and may be freely copied and distributed.

Support Information

AAON Controls provides Prism 2 installation and configuration support. Call (866) 918-1100 for free, direct telephone support or (816) 505-1100 to talk to a Controls Support Representative. Support for all telephone services is available Monday through Friday, 7:00 AM to 5:00 PM, CMT.

- **NOTE:** AAON Controls Support cannot troubleshoot internal PC and/or Windows[®]-based operating system problems.
- **NOTE:** AAON Controls Support cannot troubleshoot firewalls, routers, and/or problems on a customer's internal or external network. An IT professional may need to be consulted.

Controller Status Screen

Controller Status Screen

After successful Prism 2 installation and job-site setup, the system will be able to access the *DX Barrel Chiller Main Controller Status Screen*. See Figure 48, this page.

This screen displays current operating status and inputs and outputs, this screen allows a user to set schedules, force modes, run BACnet commands, view alarms, chart modules, and access and change setpoints and configurations.

NOTE: Only the Administrator and top level users can access and change setpoints and schedules.

Figure 48: Prism 2 - DX Chiller Main Controller Status Screen
Setpoints are accessed by clicking on **<Setpoints>** at the top left of the *DX Barrel Chiller Main Controller Status Screen* (**Figure 48**, page 108). The *Temperature Setpoints Screen* will display. See **Figure 49**, this page. At the bottom of any Setpoints Screen, there is access to all other Setpoint Screens by clicking the icons: Temperatures, Staging Delays, Vestibule, Calibration, Configuration, RSM Module, Waterside Economizer Settings, Pump Settings, and Evap Module. See **Figure 49**, **this page**.

The figures that follow show the rest of the screens available under Setpoints.

Figure 49: Prism 2 - Controller Setpoint Screens

Figure 54: Prism 2 - Setpoints - System Configuration

Figure 55: Prism 2 - Setpoints - Refrigeration Modules

Figure 56: Prism 2 - Setpoints - Waterside Economizer Settings

Figure 57: Prism 2 - Setpoints - Building Pump Settings

Figure 58: Prism 2 - Setpoints - Evap Condenser Module

PRISM 2

Changing, Saving, and Restoring Setpoints and Charting

Setpoint Help and Changing Setpoints

Positioning the cursor over the top of a setpoint box will cause a help window will pop up indicating how that setpoint is used by the controller.

	🔡 Western Mechanical Chiller Setpoints	-	×
ł	Exit Save Restore Reset Factory Defaults		
I	Selected Unit on Loop 1 Address 1 Chiller Controller		
	Temperatures If the Ambient Temperature drops below this temperature, the compressors are locked out. 25p ¹ Ambient Air Lockout Temperature 45.0° High Coil Setpoint Reset Limit)	

Figure 59: Prism 2 - Setpoints - Help Window

If the setpoint entered is too high, too low, or the user doesn't have Level 3 access, Prism 2 will not accept a new setpoint value and will restore the previous value in that field.

Press **<Enter>** to have Prism 2 save the value.

Saving and Restoring Setpoints

The **<Save>** and **<Restore>** functions at the top of every setpoint screen save and copy over ALL of the setpoints for a controller, not only those on a single setpoint screen.

Saving all setpoints from the controller to a computer for use in restoring the setpoints or for copying to another specific controller will save time in configuring a controller and reentering setpoints for another controller.

Restore Factory Defaults

To restore factory configuration and setpoint defaults for the main DX Barrel Chiller Controller, select **<Restore Factory Defaults>** at the top of any setpoint screen. A confirmation window will appear. See **Figure 60**, this page.

Confirmation Window

Select **<Yes>** to clear all configuration and settings and restore factory defaults. Select **<No>** to cancel this operation.

WARNING: AAON does not assume any responsibility or liability due to misuse or misunderstanding of this feature. Restore Factory Defaults wipes out ALL current configuration and setpoints for a single controller.

Charting

At the top of the *DXBarrel Main Chiller Controller Status Screen* (Figure 61, this page) is the option **<Charting>**.

Select **<Charting>** to display a chart for the DX Barrel Chiller #1 or #2. See **Figure 62, this page**, for an example. The options available are to clear the graph, chart the colors, or save the graph.

DX Chiller Main Co	aging Timers		×
Selected Unit on Loop XX Address XX	No Unit Exists	10:59 AM - Wednesday, 04/29/2020	Powerups: 47 Version: 9.23 Unit D#119
Chiller Mode of Operation ENABLED Artheart Air Lockout Status Enabled by Ambient Alarm Micator ALARM No Lockouts Water Flow Rate O GPM Water Proof of Flow	Schedules Entering Water 67.2°F Outdoor Air Temp 62.9°F RSM Module CPM Module	Barrel Water Setpoint Leaving Water Set 44.0°F Barrel Water Set 50.9°F SetSon 90 Water Set 90 Water 55.1°F Barrel & Leaving 44.0°F Leaving Water Set 55.1°F Autor Set 44.9°F SetSon 90 Water 55.1°F Autor Set 11 21 12 22 39 22 11 21 12 12 22 13 22 11 21 12 22 72 72 72	torrit Temperature 30.77 (concern) nat Vestibule #1 (Optional) LOCKED OUT nat Vestibule #2 (Optional) LOCKED OUT Temperature 27.079 LOCKED OUT Glycol = 20%-19.2* Freezing Point Chiller Configuration OARREL #1 BARREL #2 Carcurts Carcurts
		Chiller Running	
#1 Flow Detected	EVAP Module		
#1 Flow Detected #2 Flow Detected	EVAP Module VESTIBULE Module		COMPRESSORS 1:1 2:1 1:2 2:2 1:3 2:3 1:1 2:1 1:2 2:2 1:3 2:3
#1 Flow Detected #2 Flow Detected Clear Chart	EVAP Module	TEMPERATURE CHARTING	COMPRESSORS 111 21 12 22 13 23 11 21 12 22 13 23 1 1 1 12 12 22 13 23 11 21 12 22 13 23 1 1 1 1 12 12 22 13 23 11 21 12 22 13 23 1 1 1 1 12 12 12 12 12 12 12 12 12 12 12
It Now Detected F71 Now Detected F71 Now Detected 1200 000 <	EVAP Module VESTIBULE Module	TEMPERATURE CHARTING	
If Now Detected 77 Now Detected 1200 1200 00 </th <td>VESTIBULE Module</td> <td>TEMPERATURE CHARTING</td> <td></td>	VESTIBULE Module	TEMPERATURE CHARTING	

Figure 61: Prism 2 - Charting Selection

Schedules and Holidays

Schedules and Holidays

Selecting the **<Schedules>** icon, found on the *DX Barrel Main Controller Status Screen* (Figure 63, this page), displays the *Schedules Screen*. See Figure 64, this page.

Figure 63: Prism 2 - Charting Selection

Exit Save Resto	re Erase Sch	edules	×
Selected Unit on Loc	p 1 Address 1	No Unit Exists	
Eve Start Sun. 12:00 AM Mon. 08:00 AM	nt #1 / Stop 12:00 AM	Event #2 Start / Stop 12:00 AM 12:00 AM 12:00 AM 12:00 AM	12:00 AM 06:00 AM 12:00 PM 06:00 PM 12:00 AM
Tue. 12:00 AM Wed. 12:00 AM	12:00 AM	12:00 AM 12:00 AM	Erent 1 Erent 1 Erent 1 Erent 1
Thu. 12:00 AM	12:00 AM	12:00 AM 12:00 AM	Ervat 1 Thu. Ervat 2 Frit.
Sat. 12:00 AM Holida Hol. 12:00 AM	ys	12:00 AM 12:00 AM	Erwa 1 Sat
Pearly			

Figure 64: Prism 2 - Schedules Screen

The controller has two event start and stop times per day and two event start and stop times for holidays. The holiday start and stop times will override the standard operating hours.

To schedule holidays, press the **<Holidays>** button. The *Holiday Schedule Screen* will appear. See **Figure 65**, this page.

Click on the date to highlight it and tag it as a holiday. Days selected as holidays are indicated with a green background and white text.

There are 14 holiday periods available for each year. These holiday periods can span a single day to months.

xit	Save	Re	store	Era	se																						
Select	ed Unit I	on Los	op 1 Ad	dress 1			No	Unit E	xists																		T
		J	anua	ry					Fe	ebrua	iry						Marc	h						April			
S	М	Т	W	т	F	S	S	М	т	W	Т	F	S	S	М	Т	W	т	F	S	S	М	т	W	т	F	
	1	2	3	4	5	6					1	2	3					1	2	3	1	2	3	4	5	6	
7	8	9	10	11	12	13	4	5	6	7	8	9	10	4	5	6	7	8	9	10	8	9	10	11	12	13	
14	15	16	17	18	19	20	11	12	13	14	15	16	17	11	12	13	- 14	15	16	17	15	16	17	18	19	20	
21	22	23	24	25	26	27	18	19	20	21	22	23	24	18	19	20	21	22	23	24	22	23	24	25	26	27	
28	29	30	31				25	26	27	28				25	26	27	28	29	30	31	29	30					
			May							June							July						A	ugus	st		
S	М	Т	W	т	F	S	S	Μ	т	W	Т	F	S	S	Μ	Т	W	т	F	S	S	М	Т	W	т	F	
		1	2	3	4	5						1	2	1	2	3	4	5	6	7				1	2	3	
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31					26	27	28	29	30	31	
		Se	ptem	ber					C	ctob	er					No	overni	ber					De	cem	ber		
S	М	т	W	т	F	s	S	M	Т	W	Т	F	S	S	М	т	W	T	F	S	S	М	т	W	т	F	
	_					1	_	1	- 2		4	5					_	1	- 2	3							
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	- 5	6	1	
9	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	
16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	
23	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	
30																					30	31					

Figure 65: Prism 2 - Yearly Holiday Schedule Screen

Holiday periods override the standard operating hours to accommodate holidays or other special events.

It is not possible to program holidays for the next year, and holidays do not automatically adjust for the new year. It is necessary to access this screen after the new year and accommodate holidays that float, such as Memorial Day.

Saving and Restoring Schedules and Holidays

While at the *Schedules Screen*, select **<Save>** to save the schedule. Select **<Restore>** to restore a previously saved schedule. Select **<Erase Schedules>** to completely erase the schedule appearing in the window.

WARNING:	<erase schedules=""> will clear ALL entered</erase>						
	stop/start times, so use with caution.						

While at the *Holiday Schedule Screen*, select **<Save>** to save the Holidays. Select **<Restore>** to restore previously saved Holidays. Select **<Erase>** to completely erase the holidays appearing in the window.

Saving all schedules from the controller to a computer for use in restoring the schedules or for copying to another specific controller will save time in configuring the controller and reentering schedules for another controller.

Schedule Override and Viewing Alarms

Schedule Override

Override the schedule mode of operations by clicking on the button under Chiller Mode of Operation, located on the controller's status screen. See **Figure 66**, **this page**. The *Overrides Dialog Box* will appear.

The options are: Auto Scheduling, Force Schedule ON, and Force Schedule OFF.

A scheduled force override will remain in effect until canceled. To cancel an override, select the Auto Scheduling option.

Figure 66: Prism 2 - Mode Status and Override

Viewing Alarm Status

The Unit Alarm Screen is accessed from the controller's status screen by clicking the **<ALARM>** button. This button will be a dull red and display **<No Alarms>** when there are no alarms present or will be bright red and display **<ALARM>** if active alarms exist.

Click the **<ALARM>** button when bright red or the **<No Alarms>** button when dull red. The *Chiller Alarm Status Screen* will appear. See **Figure 67, this page**.

For the system to poll for alarms, the **<Enabled>** box associated with each alarm category must be selected. Select **<Alarm Polling Enabled>** in the Job Sites Window in order for Prism 2 to actively poll for alarms. Refer to the *Prism 2 Technical Guide* for more information.

The gray **<OK>** button next to each alarm category will change to a bright red **<ALARM>** button if an alarm exists within that category.

When an alarm(s) exists within a category, the individual **<OK>** button(s) within that category will change to a dull red **<Alarm>** or **<Show Alarm>** button (module alarms only) when an alarm(s) exists.

When **<Show Alarm>** is selected, one of four Module Alarm Screens will appear. See **Figures 68-71**, pages 113-114. Alarms can be reset in these screens.

Figure 67: Prism 2 - Alarms Screen

RSM and EVAP Module Alarms Screens

ed Unit on Loop	1 Address 1	DX E	BARREL CHILL	ER										Unit ID#
a						Refrigeration I	lodule No	tificatio	ns					
[B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3	FAULTS	B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3	WARNINGS	
ок	ОК	ОК	ок	ок	ок	Low Suction Pressure	ок	ок	ок	ок	ок	ОК	Low Suction Pressure	
ок	ок	ок	ок	ок	ок	Unsafe Suction Pressure	ок	ок	ок	ок	ок	ок	Low Suction Pressure Startup	
ок	ОК	ок	ок	ок	ОК	Trip High Discharge Pressure	ок	ок	ок	ок	ок	ок	High Discharge Pressure	
ок	ОК	ок	ок	ок	ОК	Compressor #1 Not Running	ок	ок	ок	ок	ок	ОК	No Discharge Pressure Sensor	
ок	ОК	ОК	ок	ок	ок	Compressor #2 Not Running	ок	ок	ок	ок	ок	ок	No Discharge Line Temp Sensor	
ок	ок	ОК	ок	ок	ок	No Suction Line Temp Sensor	ок	ок	ок	ок	ок	ок	High Superheat	
ок	ок	ОК	ок	ок	ок	Low Superheat	ок	ОК	ок	ок	ок	ОК	Condenser Fault	
ок	ок	ок	ок	ок	ок	High Discharge Temperature	ок	ок	ок	ок	ок	ок	Reserved	
ок	ок	ок	ок	ок	ок	High Discharge PSI Comp 2	ок	ок	ок	ок	ок	ок	Liquid Line Pressure No Detect	
ок	ок	ок	ок	ок	ок	Compressor #1 False Active	ок	ок	ок	ок	ок	ок	Liquid Line Temp No Detect	
ок	ок	ок	ок	ок	ок	Compressor #2 False Active	ок	ок	ок	ок	ок	ок	High Discharge Pressure 2	
ок	ок	ОК	ок	ок	ок	No Suction Pressure Sensor	B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3	LOCKOUTS	
ок	ок	ок	ок	ок	ок	Emergency Shutdown	ок	ок	ок	ок	ок	OK	Suction Pressure Lockout	
ок	ОК	ОК	ок	ОК	ок	ModBus Slave Timeout	ок	OK	ок	ок	ок	OK	Low Discharge Pressure	
ок	ок	ОК	ок	ок	ок	High Superheat	ок	ок	ок	ок	ок	ОK	Compressor #1 Over Current	
ок	ОК	ОК	ок	ок	ок	High Saturation Temp	ок	ок	ок	ок	ок	ОК	Compressor #2 Over Current	
B1:C1	B2:C1	B1:C2	B2:C2	B1:C3	B2:C3	FAULTS	ок	OK	ОК	ОК	ОК	OK	High Discharge Temperature	
ок	ок	ок	ок	ок	ок	Compressor #1 Over Current								
ок	ОК	ОК	ок	ок	ок	Compressor #2 Over Current	OR	OK				OK	High Discharge Pressure Lockout	
ок	ок	ок	ок	ок	ок	Compressor #1 Under Current	ок	ок	ок	ОK	øк	ОК	Low Superheat System Lockout	
ок	ОК	ОК	ок	ОК	ОК	Compressor #2 Under Current	ок	ок	ок	ок	ок	ОК	High Superheat System Lockout	
ок	ОК	ОК	ок	ок	ок	Compressor #1 VFD Fault	ок	ок	ок	ок	ок	ок	High Saturation Temperature	
ок	ок	ОК	ок	ОК	ОК	Low Suction Compressor #2	ок	ок	ок	ок	ок	ок	Compressor #1 Under Current	SET
							ок	ок	ок	ок	ок	ок	Compressor #2 Under Current	NE
													DO	NE

Figure 68: Prism 2 - Refrigeration Module Alarms and Reset Screen

Figure 69: Prism 2 - EVAP Module Alarms and Reset Screen

CPM and Vestibule Alarms and Reset Screens

	CPM Alarms	
ОК	WSE Not Operating	
ОК	Freeze Protection	
ОК	Primary Outlet Temp Sensor Failure	
ОК	HE Waterside Outlet Temp	
ОК	Heat Exchanger Inlet Temp Sensor F	⁻ ailure
ОК	Heat Exchanger Outlet Temp Senso	r Failure
ОК	VFD Fault	
ОК	Primary Pump A1 Locked Out	
ОК	Primary Pump A2 Locked Out	
ОК	Secondary Pump 1 Locked Out	
ОК	Secondary Pump 2 Locked Out	
ОК	Primary Pump B1 Lockout Out	
ОК	Primary Pump B2 Locked Out	
ОК	Maximum Pressure Exceeeded	
ОК	Pumps Locked Out	RESET
ок	Glycol Feeder Low	DONE

Figure 70: Prism 2 - CPM Alarms and Reset Screen

	Vestibule #1 Alarms							
ОК	Locked Out							
ОК	WFS Alarm							
ОК	Refrigerant Leak Detected							
ОК	Vestibule Temperature Fault							
	Vestibule #2 Alarms							
ОК	Locked Out							
ОК	WFS Alarm							
ОК	Refrigerant Leak Detected							
ОК	Vestibule Temperature Fault							
RESET	RESET LOCKOUT DONE							

PRISM 2

CommLink 5 Connection

110 VAC to 24 VAC

IP Module Connection

Figure 73: Prism 2 - IP Module Connection

PRISM 2

USB-Link 2 Connection

Figure 74: Prism 2 - USB-Link 2 Connection

Main DX Barrel Chiller Controller Technical Guide G070300 · Rev. B · 211117

AAON Controls Support: 866-918-1100 Monday through Friday, 7:00 AM to 5:00 PM Central Standard Time

Controls Support website: www.aaon.com/controlstechsupport

AAON Factory Technical Support: 918-382-6450 techsupport@aaon.com

NOTE: Before calling Technical Support, please have the model and serial number of the unit available.

PARTS: For replacement parts, please contact your local AAON Representative.

